
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Efficient latency control in Fog deployments via
hardware-accelerated popularity estimation

MARCEL ENGUEHARD∗, YOANNDESMOUCEAUX†, andGIOVANNACAROFIGLIO,Cisco
Systems, France

Introduced as an extension of the Cloud at the network edge for computing and storage purposes, the Fog is

increasingly considered a key enabler for Internet-of-Things applications whose latency requirements are not

compatible with a Cloud-only approach. Unlike Cloud platforms, which can elastically accommodate large

numbers of requests, Fog deployments are usually dimensioned for an average traffic load and, thus, unable to

handle sudden bursts of requests without violating latency guarantees. In this paper, we address the problem

of efficiently controlling Fog admission to guarantee application response time. We propose request-aware

admission control (AC) strategies maximizing the number of Fog-handled requests by means of dynamic

popularity estimation. In particular, the LRU-AC, an AC strategy based on online learning of the request

popularity distribution via a Least Recently Used (LRU) filter, is introduced. We contribute an analytical model

for assessing LRU-AC performance and quantifying the incurred reduction of Cloud offload cost, w.r.t. both

an ideal oracle-based and a request-oblivious AC strategy. Further, we propose a feasible implementation

design of LRU-AC on FPGA hardware using Ageing Bloom Filters (ABF) to mimic the function of the LRU-AC,

while providing a compact memory representation. The use of ABFs for LRU-AC is theoretically validated and

verified through simulation. The current implementation shows a throughput of 16.7 Mpps and a processing

latency of less than 3 µs while multiplying the Fog acceptance-rate by 10 in the evaluated scenario.

ACM Reference Format:
Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio. 2019. Efficient latency control in Fog

deployments via hardware-accelerated popularity estimation. ACM Trans. Internet Technol. 1, 1 (August 2019),
22 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The emergence of low-latency applications in the context of the Internet of Things (IoT) has created

a need for computing and storage platforms geographically and topologically close to the access net-

work. IoT deployments used to typically rely on the Cloud (i.e., a large-scale, distributed, and elastic

data center) to perform these functions, but the Cloud does not possess the required geographical

properties. Introduced as an extension of the Cloud at the network edge (i.e., geographically near

the users’ devices, for instance in an ISP’s premises) for computing and storage purposes [1], the

Fog is a highly virtualized, potentially distributed, computing and storage platform capable of

processing IoT data under low latency. Since its definition, there has been a growing interest in the

research community for Fog computing, encompassing areas such as workload placement [2–4],

caching [5, 6], or application profiling [7]. Accelerated by the advent of 5G, the Fog is expected to

∗
Also with Télécom ParisTech.

†
Also with École Polytechnique.

Authors’ address: Marcel Enguehard; Yoann Desmouceaux; Giovanna Carofiglio, Cisco Systems, Chief Technology and

Architecture Office, 11 rue Camille Desmoulins, Issy-les-Moulineaux, 92130, France, firstname.lastname@cisco.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

play a key role for IoT applications in cases where latency requirements and/or security reasons

preclude the use of a Cloud-only approach [8].

Fog platforms are not intended as a replacement for Cloud processing, rather as a complementary

computing and storage platform to use if and whenever beneficial [3]. For instance, with frameworks

such as AWS Greengrass [9], IoT providers can use their own devices (e.g., an IoT gateway or a

local compute node) to perform some stateless pre-processing of data on its path to the Cloud. In

addition, the Fog does not enjoy the same elasticity as the Cloud. Indeed, while Cloud datacenters

inherently scale due to their size and number of tenants, Fog nodes have physical limits that

cannot be infringed [4]. Placing and scheduling of Fog applications to meet Quality of Service (QoS)

requirements has thus been the object of recent studies [3, 4]. They, however, rely on centralized

optimization and do not consider sudden bursts of requests, e.g., flash crowds, that can increase

response time and raise scalability issues for Fog deployments. Such bursts of queries can be due to

a user-led increase in demand for certain resources, but also to redirection of queries originally

destined to another network for disaster mitigation [10, 11]. In such cases, the natural solution is to

redirect part of the Fog load to the Cloud [12, 13]. However, if done incorrectly, that could actually

worsen the response latency. Furthermore, renting resources in the Cloud is expensive, as opposed

to user-owned Fog devices. This paper thus investigates the question of: how to minimize Cloud
costs while offering statistical latency guarantees in case of high load in a Fog network?
IoT applications can roughly be categorized as: (i) latency-critical, when processed data must

be received within 1-10ms, (ii) latency-sensitive, where the timescale of user interaction is in the

order of 100ms [14], and (iii) latency-tolerant, that have no specific delay constraint. Whereas

latency-critical applications cannot run in the Cloud (but rather in the device or at Fog level),

latency-tolerant applications would naturally be deployed there. Thus, Cloud redirection is most

relevant for applications of the latency-sensitive class, where the computing bottleneck in the Fog

may force to offload part of request processing to the Cloud. At the same time, the use of faraway

Cloud resources not only increases the cost for the operator but may also increase the service latency.
There is thus a need for clever Fog admission control (AC) to keep response time bounded.

In [15], an approach for Fog AC is presented that relies on using request popularity to optimize

the usage of the Fog platform, and in particular of the caching capacities of the Fog. Specifically,

two AC strategies are introduced: the LFU-AC, which exploits perfect knowledge of the request
popularity distribution and the LRU-AC, itself based on learning the most popular requests via a

cache of request identifiers with the Least-Recently-Used (LRU) policy. Using an analytical model,

the LFU-AC is shown to significantly reduce cost as compared to optimized request-agnostic AC

strategies. The LRU-AC performance is also shown to be close to the LFU-AC bound.

In this paper, this work is extended by studying the system implementation of the LRU-AC

strategy on programmable hardware, thus allowing for a line-rate, low-latency deployment that does

not require provisioning extra computing resources. As implementing an LRU cache in hardware is

inconvenient due to the necessity of using linked-list structures [16], an implementation of the LRU-

AC using Ageing Bloom Filters (ABF) [17] in NetFPGA [18] is proposed. An analytical model of the

expected hit-rate of the ABF is built to guarantee its behavior w.r.t. the LRU-AC. The use of an ABF is

shown to reduce memory footprint by up to 4×, making the implementation fit within memory sizes

available in programmable hardware devices. As one example of an underlying network protocol

that can be used by this approach, the implementation relies on hICN [19], an Information-Centric

Networking (ICN) protocol that uses the format of TCP/IP packets for backward compatibility.

Using the P4 framework [20], request semantics are then efficiently accessible in hardware at the

network layer (due to hICN’s name-based forwarding with fixed-sized names), while relieving the

AC from maintaining per-flow state by way of a connection-less approach. The implementation is

shown to support a throughput of 16.7 Mpps (exceeding 10 GbE line-rate) with a packet processing

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 3

User

Sensor
CacheCompute

Cache Compute

Cloud

Fog

1

23 4

5

1

2

3
Admission-

Control

Fog – Cache hit
Fog – Cache miss

Storage DBAccess Transit

Fig. 1. Reference IoT, Fog and Cloud architecture

latency of 3 µs. Algorithmic performance of the ABF is evaluated and shown to produce QoS results

that are consistent with the LRU-AC model.

The remainder of this paper is organized as follows: Section 2 states the Fog-AC problem in a

principled way; Section 3 introduces the analytical model used to derive the performance of AC

strategies; relevant popularity-based strategies are presented and partially evaluated in Section 4;

in Section 5, the use of ABF to realize the LRU-AC, selected because it is both practical and effective,

is proposed and justified; the LRU-AC hardware implementation is then introduced in Section 6,

and is evaluated in Section 7.

2 PROBLEM DESCRIPTION
2.1 Reference Fog architecture
The reference IoT architecture assumed in this paper consists of three main components: (i) IoT

networks, where sensors, actuators, and users are connected; (ii) an access network which connects

these IoT networks together and with the Internet; and (iii) a Cloud platform, used for compute

and storage. The Cloud platform is assumed to be a large-scale private or public data-center, with

an infinite amount of resources. Workloads are assumed to be able to be automatically scaled up or

down to handle variations in computing demands.

On top of this Cloud platform, a Fog deployment is available in the access network. Both the Fog

and the Cloud are equipped with LRU caches. Each tenant of the Fog deployment is assumed to be

allocated a fixed part of the computing resources. Therefore, without loss of generality, we adopt a

per-application view and consider a single Fog node with computing and storage capabilities that

receives requests from a single stateless application (e.g., lambda function). The Fog, either owned

by the application developer or rented from its Internet Service Provider (ISP), is deployed for

latency-critical applications. However, as Fog platforms are not elastic, the application developer

wants to use the residual computing and memory capacities to perform latency-sensitive tasks.

That residual capacity is considered to be constant, hence the Fog node cannot handle a high arrival

rate for a prolonged period. It redirects part of its load to a Cloud platform, where the operator

rents computing and storage resources, while still respecting the latency agreement.

An admission control module is in charge of forwarding incoming requests from the IoT networks

to either Fog (accept) or Cloud (refuse). That architecture is summarized in Figure 1. We consider

Fog applications working in the following way: (i) the application retrieves raw data from one

or several sensor nodes (e.g., an image or a temperature from several sensors); (ii) it performs

some computation to transform the raw data into processed data (e.g., JSON file indicating detected

shapes, or the average of the measured temperatures); (iii) the processed data is retrieved by users

or actuators which use it to make decisions. As security is paramount for Fog applications [1], both

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

processed and raw data are encrypted during network transmissions. In particular, we consider

a pull-based model driven by client requests, of which we illustrate two of the possible paths in

Figure 1. The user application starts by issuing requests (step 1), which reach the AC module. For

the sake of illustration, only cases where requests are accepted for processing in the Fog are shown.

In the Fog node, the request is matched against a cache (step 2) for the availability of processed

data. In case of a cache hit (red dots · · ·), the processed data is sent back directly to the user. In case

of a cache miss (green dashes), the raw data must be retrieved from the sensor (step 3), before

the computation can take place (step 4) and the processed data can then be served back to the user

(step 5).

2.2 Fog vs Cloud admission control
To devise such strategies where the application runs both in the Cloud and in the Fog, costs for

the Fog operator must be considered. In the Cloud, resources are elastic and the capacity can be

increased as the incoming load grows [21]. Furthermore, the Cloud is assumed to always store

the raw data for orthogonal archiving and monitoring purposes; the cost of raw data archival is

thus not considered. This comes on top of the cache for processed data, whose size is defined by

the amount of storage rented in the Cloud. Moving data to/from the Cloud through the transit

network also has a cost. On the other hand, application deployment in the Fog comes at no extra

monetary cost for the Fog operator (since they already own/rent the infrastructure). As Fog nodes

have limited storage resources, the Fog cache is only used for processed data. The Fog node also

has a finite amount of computing resources, which must be equally shared between all incoming

requests. Thus, in case of a high load, the Fog node might have a high completion time or even start

dropping requests, which may violate the agreement set up with the Fog application developer.

The need for a proper offloading function ϕ between the Fog and Cloud resources thus becomes

clear: such a function should minimize the cost Π(ϕ) of renting Cloud resources while respecting
the agreed upon latency constraint, which we outline below (and formalize in Section 3):{

min. Π(ϕ)

s.t. E[T (ϕ)] ≤ ∆
(1)

where T is the stochastic variable describing the system completion time. In particular, Π is a cost

per second, in accordance with the pay-as-you-use model for Cloud pricing. We use a statistical
latency constraint, which guarantees that the average request completion time is under ∆. The
advantage of such formulation is clear considering that it enables us to express the constraint in

closed form in a queueing model, which simplifies tractability.

3 AN ANALYTICAL MODEL
To evaluate the performance of AC functions, a queueing model for the response time of the IoT

architecture is introduced. The variables necessary for the model are summarized in Table 1.

3.1 Application model and request distribution
Let us consider a single application allocated a fixed amount of resources from a multi-tenant

Fog deployment. This application is described by its latency constraint ∆, its raw data size sr , its
processed data size sp , and a service time X . In particular, sr and sp are assumed to be constant,

while X is assumed to be a stochastic variable following an exponential distribution. Let now R be

the total number of possible requests, and {r1, . . . , rR } these requests. Following previous work
1
,

1
Most query processes generated by actual demands from a set of distributed users have been found to follow a Zipf

distribution [5, 22–25].

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 5

Table 1. Variables used in the model

Application specific unit Optimization variables unit
Number of , requests R - Load-balancing function ϕ(r) -

Cumulated arrival rate λ req/s Cloud cache size sc Objects

Service time X Cycles Total request serving time T (ϕ, sc) s

Raw data size sr B Cost function Π(ϕ, sc) $/s

Processed data size sp B Cloud characteristics
Latency constraint ∆ s Cloud compute capacity pc Hz

Popularity distribution q(r) - DB query delay τd s

Fog characteristics Transit network capacity κt B/s

Fog compute capacity pf Hz Transit network delay τt s

Fog cache size sf Objects Handshake delay τc s

Access network capacity κa B/s Cloud pricing
Access network delay τa s Compute price cc $/s

Handshake delay τf s Network price cn $/s

Miscellaneous Storage price cs $/B

Cache hit probability hf
c
(r , sf

c
) -

the request popularity distribution q is assumed to follow a Zipf distribution [26], i.e., for a request

r arriving in the system, q(k) = P[r = rk] = γk−α where α > 0 is the skew parameter and γ a

normalization factor. In particular, requests arrivals are user-driven and are thus well modeled

by a Poisson process of parameter λ. The arrival processes for each request rk are assumed to be

independent and thus follow a Poisson process of parameter λk = q(k)λ. The use of an independent

requests model (IRM), wherein the arrival time of each request is independent from the arrival time

of the previous one, is known to under-estimate the cache hit rate [27, 28], so we expect our results

to be conservative.

3.2 Queueing model
Whenever relevant, we follow seminal work to select the most appropriate queueing model to

describe each resource. Particularly, the Fog compute is modelled by a M/M/1-PS queue [12, 29]
2
:

the processor-sharing policy models that the Fog has a fixed amount of resources that must be

shared between all the incoming requests. On the other hand, as the Cloud compute is elastic, it is
best represented by an M/M/∞ queue

3
, and we represent Cloud-database access as a constant-time

M/D/∞ queue. For network resources, the M/M/1-PS model is used [12, 30, 31]. As admission control
decisions and cache lookup should be done at line-rate (see Section 6), their impact is considered

minimal w.r.t. other queues; and since they do not impact the comparison between Cloud and

Fog service time anyway, they are neglected in what follows. Finally, the security handshakes are

modelled as M/D/∞ queues
4
, to account for a constant network and compute delay. Several families

of protocols (TCP/TLS, ICN) requiring a different number of RTTs to complete the handshake can

be modeled by modulating the amount of time spent in these queues. For the sake of generality, in

the model, a one-RTT handshake is assumed (e.g., similarly to the TLS 1.3 handshake), i.e.: τf = 2τa
and τc = 2(τa + τt). The resulting queueing system is depicted in Figure 2. One can note that the

2
Arrivals are Markovian, processing times are Markovian, one processor can handle the jobs according to a processor-sharing

policy

3
Arrivals are Markovian, processing times are Markovian, and there is an infinite number of instances to treat the queries.

The underlying assumption is that of a perfectly elastic autoscaling policy.

4
Arrivals are Markovian, processing times are constant and do not depend on the presence of other queries

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

Cloud

Compute
M/M/∞

Compute
M/M/1

PS

Fog

𝜆

𝜆f

𝜆f,nh

𝜆f,m

𝜆c

𝜆c,m 𝜆c,m

𝜆c

1-Φ

Φ

hc

1-hc

hf

1-hf

𝜆

𝜆f,m

Access ↓
M/M/1-PS

Access ↑
M/M/1-PS

Transit ↓
M/M/1-PSCache

Handshake
M/D/∞

DB
M/D/∞

Handshake
M/D/∞

AC

Cache
𝜆f

𝜆c Handshake
M/D/∞

Fig. 2. Queueing network

Table 2. Arrival rate per queue in network

AC AC module / Access downstream λ

Fog TLS Fog λf =
∑
r ∈R ϕ(r)λq(r)

Access upstream / Fog Compute λf ,m =
∑
r ∈R ϕ(r)(1 − hf (r))λq(r)

Cloud TLS Cloud / Transit downstream λc =
∑
r ∈R (1 − ϕ(r))λq(r)

DB / Compute Cloud λc ,m =
∑
r ∈R (1 − ϕ(r))(1 − hc (r))λq(r)

request transmission time is uniquely taken into account in the handshake queue: since IoT requests

have negligible size, their transmission time is indeed dominated by their propagation time.

TheAC strategy can be expressed asϕ:{1, . . . ,R}→[0, 1], a function that to each request associates
a probability of being accepted in the Fog. In particular, given a popularity distribution q and

an admission control strategy ϕ, the popularity distribution of requests arriving in the Fog is

qf (r) = γf ϕ(r)q(r), where γf is a normalization factor. For computing the hit probability in the Fog

cache, the seminal approximation proposed by Che et al. [32] is used:

hf (r) ≈ 1 − e−qf (r)ts (2)

where ts is the unique root of
∑R

r=1(1 − e
−qf (r)t) = sf . A similar model applies for the Cloud cache,

replacing the probability function ϕ by its complement 1 − ϕ.

3.3 Computing the statistical latency
First, let us point out that since processor-sharing queues are quasi-reversible processes, the exit

distribution of an M/G/1-PS queue is a Poisson process (Theorem 3.6 of [33]). This is also true for

the M/G/∞ queue [34], thus all the queues have a Markovian input. Thus, the expected service time

for a job of size X and Poisson arrival rate λ of an M/G/1-PS queue with capacity C is given by:

E[T] =
1

(µ − λ)
where µ =

C

E[X]
(3)

The arrival rate at each queue can be derived from the offloading strategy ϕ and the cache hit

probabilities hf and hc at the Fog and Cloud caches respectively, obtained using Equation (2).

Per-queue arrival-rates are reported in Table 2. The expected queueing delay is thus:

E[T] =
∑
r

q(r)
[
ϕ(r)E[Tf (r)] + (1 − ϕ(r))E[Tc (r)] + E[Ta,d]

]
(4)

where the expected latency for the service time in the Fog Tf (r) is:

E[Tf] = τf + (1 − hf)
(
τf + E[Ta,u] + E[Tcomp,f]

)
,

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 7

the expected latency for the service time in the Cloud Tc (r) is:

E[Tc] = τc + (1 − hc)
(
τd +

E[X]
pc

)
+ E[Ttransit ,d],

and whereTa,u ,Ta,d ,Tcomp,f ,Ttransit ,d respectively represent the time spent in the access upstream,

in the access downstream, in the compute in the Fog, and in the transit downstream, and whose

expected values can be computed with Equation (3), Table 1 and Table 2.

3.4 Computing the cost function
The cost per second consists of a network, a computing, and a storage term. The computing power

rented in the Cloud is assumed to be synchronized with the incoming load (i.e., the Cloud spawns a

container process at each new request). The cost of running the Cloud increases proportionally to

the requested load: p(c, s,ν) = ccc + css + cnν , where c (resp. s) is the amount of computing (resp.

storage) resources rented on the Cloud, and ν is the egress Cloud traffic in bytes per second.

Since the resource consumption in the Cloud is assumed to be elastic, if Qc (t) is the number of

customers in the Cloud compute M/M/∞ queue, the instantaneous number of instantiated Cloud

computing instances is: c(ϕ, sc)t = Qc (t). According to [34], the expected value for c(ϕ, sc) is thus:

E[c(ϕ, sc)] =
λc ,m(ϕ, sc)

pc/E[X]
The storage cost is easier to compute as it depends on the cache size in the Cloud: s(ϕ, sc) = scsp .
Finally, for each incoming request, sp is transferred downstream as a reply. Given the Cloud arrival

rate λc , the average number of bytes per second on the Cloud downstream link is: E[ν (ϕ, sc)] =
λc (ϕ)sp . Thus, the total cost function reads:

Π(ϕ, sc) =
ccλc ,m(ϕ, sc)

pc/E[X]
+ csscsp + cnλc (ϕ)sp (5)

3.5 An example application - Numerical parameters
All upcoming numerical evaluations use the characteristics described in Table 3. In particular,

we select an application with a medium computing difficulty (10ms on a 1GHz processor) and

medium processed data size, and a popularity parameter α = 1
5
. For the Fog deployment, the

application is assigned a fixed amount of resources from a computing platform, amounting to a

3GHz CPU and 1GB of cache. Finally, to make the evaluation more realistic, the public pricing of

the Google Compute infrastructure as of October 2017 is used (as per https://cloud.google.com/

compute/pricing), the delay target is set to ∆=100ms.

4 POPULARITY-BASED FOG ADMISSION
Request processing in the Fog-Cloud system can be decomposed in three modes: requests served

(i) from the Fog cache, (ii) from the Fog compute, and (iii) from the Cloud (disregarding the

Cloud cache vs the Cloud compute trade-off). An effective AC strategy should then maximize the

proportion of traffic handled by the Fog. Since the Fog compute has a fixed capacity, increasing the

amount of traffic handled by the Fog can only be done by increasing the cache hit-rate. The AC policy

should then aim at maximizing the global Fog cache hit-rate (as defined by h̃f =
∑

r ϕ(r)hr (r ,ϕ))
while keeping the Fog-Compute arrival rate λf ,m bounded.

To this end, an effective approach is to admit only popular content in the Fog [15, 35]. Indeed,

this method increases the hit-rate of the cache policy effectiveness by artificially reinforcing the

5
Zipf’s α parameters are reported in [24, 25] to range in [0.6, 2.5] across the literature. It is argued in [25] that α = 1 is a

reasonable value if no assumption is to be made as to where α lies in this spectrum.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

Table 3. An example application

Deployment Application Cloud pricing

pf 3GHz R 10
7 cn $0.08 per GB

sf 10
5
(1 GB) λ 10 kHz cs $0.004446 per GB and hour

κa 10Gbit/s E[X] 10
7
CPU cycles cc $0.033174 per vCPU and hour

τa 2ms sr 1MB

pc 2GHz sp 10 kB

τd 1ms α 1

κt 1Gbit/s ∆ 100ms

τt 20ms

skewness towards the most popular pieces of content in the cache input distribution. The AC

must then be able to (i) identify the content targeted by each request and (ii) extract popularity

patterns. Content identification (i) is an architectural problem, which we discuss in Section 6.1. To

illustrate the limit of solutions without content awareness, a “blind” AC is introduced in Section 4.1.

Extracting popularity patterns (ii) is a similar problem to caching policies: detecting the most

popular pieces of content. Thus, using a virtual cache (caching only identifiers rather than content)

that follows traditional admission and eviction policies is a natural solution. In this case, a hit in

the virtual cache identifies popular requests which should be handled in the Fog, while a miss

hints that the request is not popular and should be offloaded to the Cloud. This solution is similar

to multi-layered caching systems such as the 2Q-LRU [36], differing mainly in that the first layer

(the identifier cache) is completely independent from the actual cache. Indeed, in 2Q the virtual

layer only governs cache insertion (but not cache retrieval), whereas the Fog-AC might refuse

requests even though the corresponding answer is available in the Fog cache. In particular, the LFU

(Section 4.2) and LRU (Section 4.3) policies are investigated.

4.1 Blind AC
A request-oblivious AC strategy, called Blind-AC, is used as a baseline. It admits all requests with

i.i.d. probability: ϕ(r)=ϕB,∀r . In particular, Equation (1) can be rewritten as:{
min. Π(®ϕB, sc)

s.t. E[T (®ϕB, sc)] ≤ ∆

with
®ϕB = (ϕB, . . . ,ϕB). In this particular case, since (ϕB, sc) ∈ [0, 1] × [0,R], the problem is easy to

optimally solve numerically. We next evaluate the respective importance of the two optimization

variables using the parameters reported in Table 3 for numerical evaluation. In particular, the

variation of the costs and constraint functions depending on either ϕB or sc are represented in

respectively Figure 3a and Figure 3c.

Figure 3a shows the variation of the constraint function (+, left side) and of the compute (•,

right side) and network (×, right side) costs for a fixed cache size sc = 3.1 · 105. The storage cost is
ignored as it is constant (since sc is fixed). The first takeaway is that, as expected from the costs in

Table 3, the network cost is dominant w.r.t. the compute and memory cost. We also notice that the

constraint function diverges towards +∞ when ϕB grows close to 0.45, as the Fog compute queue

becomes unstable and cannot handle the request rate.

In Figure 3c, we next vary the cache size sc for a fixed load-balancing probability ϕB = 0.42
(the sweet spot in Figure 3a). We show the value of the constraint function (+, left side), and the

compute (•, right side) and memory (▼, right side) costs. The network cost is now ignored since it is

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 9

0.000 0.025 0.050 0.075
Blind probability φB

0.00

0.05

0.10

0.15
C

on
st

ra
in

t
(s

)

0

10

20

30
E[T]

(a) Blind-AC vs ϕ, sc = 3.1 · 106

101 103 105

Filter size kLFU

0.00

0.05

0.10

0.15

0

10

20

30

C
os

t
($

/h
)

Compute Network

(b) LFU-AC vs ϕ, sc = 3.0 · 106

101 103 105 107

Cache size scache,c

0.090

0.095

0.100

0.105

C
on

st
ra

in
t

(s
)

0.0

0.4

0.8

1.2

E[T]

(c) Blind-AC vs sc , ϕ = 0.084

101 103 105 107

Cache size scache,c

0.090

0.095

0.100

0.105

0.0

0.4

0.8

1.2

Compute Memory

(d) LFU-AC vs sc ,kLFU = 1.4·105

Fig. 3. Constraint value (left) and cost (right) of the system vs ϕ and sc for the Blind- and LFU-AC

constant when ϕ is constant. First, we note that varying the cache size has a limited impact on both

the cost and the constraint function. Furthermore, in this case, given that the compute is almost

one order of magnitude more expensive than the memory and the Cloud popularity distribution is

sufficiently skewed, it is interesting to cache highly popular requests.

4.2 LFU-AC strategy
Let us first consider a perfect LFU virtual cache, which deterministically identifies the kLFU most

popular requests for processing in the Fog. In particular, the AC function ϕ can be expressed as:

ϕ(r) = δr ≤kLFU
def

=

{
1 if r ≤ kLFU

0 otherwise.

Equation (1) then becomes: {
min. Π(®δkLFU , sc)

s.t. E[T (®δkLFU , sc)] ≤ ∆

with
®δkLFU = (δ1≤kLFU , . . . , δR≤kLFU). Again, this problem is two-dimensional and can easily be

solved numerically.

Figure 3b (resp. Figure 3d) shows the evolution of the cost and constraint functions while setting

sc = 0 (resp. kLFU = 6.1 · 105) for the setup in Table 3. At a first glance, Figure 3b indicates that a

proper choice of kLFU allows decreasing the network cost at levels unreachable with the Blind-AC

while respecting the constraint. Furthermore, as in Section 4.1, the dominant factor in terms of cost

is the number of offloaded requests. Both of these insights point towards LFU as a good strategy

for Fog/Cloud AC. Additionally, Figure 3d shows that for small values of sc , the compute cost stays

constant. This is due to the popularity distribution at the Cloud cache, which only contains the

long tail of the Zipf distribution. Thus, for small cache sizes, the hit probability is low and the cache

almost useless.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

Table 4. Optimal costs and parameters per AC

Method E[ϕ] sc Π

Blind 0.084 3.1 · 106 27 $/h

LFU 0.75 (kLFU = 1.4 · 105) 3.0 · 106 7.6 $/h

LRU 0.71 (kLRU = 2.8 · 105) 2.9 · 106 8.6 $/h

4.3 The LRU-AC strategy
While the LFU-AC is efficient, it is an ideal policy, difficult to realize in practice if the popularity

distribution is not known in advance (as deriving the exact popularity distribution is difficult and

slow
6
). To derive a practical AC policy, we argue that the AC does not need to learn the popularity

of each specific request. It only needs to flag whether a request is popular, acting as a low-pass

filter. In a second step, the LRU policy is thus considered for the AC virtual-cache. Compared to

the aforementioned counter solution for the LFU-AC, the LRU-AC has four main advantages: (i) it

does not require prior knowledge of the application; (ii) it keeps memory constrained to the size

of the filter, instead of the size of the catalogue; (iii) it is flexible w.r.t. changes in the popularity

distribution; (iv) it requires minimal effort for integration in ICN forwarders as the LRU structure

is already used for caches.

To incorporate LRU-AC in the model, we must compute the load-balancing function ϕ depending

on the filter size kLRU . Since the AC behaves like an LRU cache, ϕ(r) = hkLRU (r) where hkLRU (r)
is the hit probability for the request r in an LRU cache of size kLRU with input distribution q,
which can be derived straightforwardly from Equation (2). Integrating this in Equation (1) yields a

constraint and a cost function that depends only on kLRU and sc :{
min. Π(®hkLRU , sc)

s.t. E[T (®hkLRU , sc)] ≤ ∆

with
®hkLRU = (hkLRU (1), . . . ,hkLRU (R)). However, the interaction between the LRU meta-cache and

Fog LRU cache introduces some correlation effects, as shown by Garetto et al., for the LRU-2Q

cache [37]. Following their example, a discrete time Markov chain is used to model the interdepen-

dence between hits in the filter and in the Fog cache. Details of the derivation are provided in [38].

Compared to the LFU-AC, optimizing the LRU-AC only requires knowing the popularity skewing

factor α and the arrival rate λ instead of the actual per-content popularity distribution.

4.4 Preliminary evaluation of the AC strategies
In this section, a first evaluation of the AC strategies based on the model introduced in Section 3

provided. In particular, the Method-of-moving-asymptotes [39] (in its NLopt implementation [40])

is used to solve the optimization problem (Equation (1)). A Jupyter notebook is available for

reproducing the results of this section or to experiment with different parameters [41].

In a first step, we show in Table 4 the optimized values for our example application. We first

note that using the LRU and LFU-AC allows the Fog to handle more than twice as many requests

as with the Blind-AC. This results in a decrease in offload cost of more than 70%. Furthermore, it

shows that the LRU-AC has similar performances to the LFU-AC, with a 3% relative difference in

offload cost w.r.t. the Blind-AC.

6
This requires either offline analysis of the popularity distribution, or to keep counters of incoming requests. Both solutions

are not flexible to popularity changes and are difficult to implement efficiently.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 11

100 102 104 106

Fog cache size sf (nb of objects)

5

10

15

20

25

O
pt

im
al

co
st

($
/h

)

Blind

LFU

LRU

1e–5% 1e–3% 0.1% 10%

(a) Fog cache size sf

0.5 1.0
Popularity parameter α

0

10

20

30

O
pt

im
al

co
st

($
/h

)

Blind
LFU
LRU

sf=105

sf=104

(b) Zipf parameter α

0 4000 8000 12000
Arrival rate λ (req/s)

0

10

20

30

O
pt

im
al

co
st

($
/h

) Blind

LFU

LRU

(c) Arrival rate λ

Fig. 4. Cost of the Blind-, LFU-, and LRU-AC letting the application-independent parameters vary

In Figure 4a, the influence of the Fog cache size sf on the optimal Cloud cost for the Blind-, LFU-,

and LRU-AC strategies is shown. In particular, this figure shows that both the LFU- and LRU-AC

strategies are much better at exploiting an increasing cache size that the Blind-AC. Indeed, for

the Blind-AC, increasing the Fog cache size only slightly decreases the optimal cost. On the other

hand, both the LFU- and the LRU-AC provide an exponential decrease of the cost as the cache size

increases, showing the effectiveness of popularity-based AC. Furthermore, this graph confirms that

the LRU-AC is a good approximation of the ideal LFU-AC, this regardless of the Fog cache size.

Figure 4b then investigates the influence of the popularity distribution skew (represented by the

Zipf parameter α). For small α values, the popularity distribution converges towards a uniform

distribution, thus diminishing the impact of popularity-based ACs. However, for typical values

of α found in the literature (α ∈ [0.5, 1.1]), the LFU- and LRU-AC strategies allow for a largely

reduced optimal cost for both Fog cache sizes that we tested. Furthermore, the LFU- and LRU-AC

strategies with sf = 10
4
are much more efficient than the Blind-AC strategy with sf = 10

5
. This

indicates that the strategies also allow for more efficient provisioning of Fog resources. Once again,

the performance of the LRU-AC is close to the LFU-AC, varying by at most 6%.

Finally, the impact of the arrival rate on the efficiency of the strategies is shown in Figure 4c.

Interestingly enough, the optimal cost increases linearly w.r.t. the arrival rate for all three cases,

with slopes at 2.9·10−3 $/Hz for the Blind-AC, 8.2·10−4 $/Hz for the LFU-AC, and 1.0·10−3 $/Hz
for the LRU-AC. This confirms that the LFU- and LRU-AC strategies cope better with increased

loads (e.g., flash crowds) than the Blind-AC. This is typically due to the improved hit rate at the

Fog cache, which absorbs a large part of the increased arrival rate. Particularly, if the cost of the

Blind-AC diverges with respect to the LFU-AC and the LRU-AC for an increasing arrival rate, their

ratio stays however constant. The ratio between the absolute costs for the LFU-AC (LRU-AC) over

the Blind-AC is of 3.5× (2.9×). Thus, when the arrival request rate increases, the relative gain of

using the LFU-AC (LRU-AC) over the Blind-AC also increases, which shows the LRU- and LRU-AC

to be quite robust to high arrival rates.

This preliminary evaluation shows that the LRU-AC combines tractability, flexibility, and effec-

tiveness. It is thus selected as the default admission policy for the remainder of this paper.

5 AGEING BLOOM FILTERS FOR A HARDWARE-ACCELERATED LRU-AC
As the AC strategies were designed to provide predictable completion time under high-load, their

implementation should offer the same virtues. Thus, implementing the LRU-AC in hardware seems

particularly profitable. However, the LRU-AC raises many realization challenges, particularly on

hardware-accelerated platforms. The first and obvious one is memory usage. As shown in Section 5.4,

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

Algorithm 1 The ABF insertion algorithm

if item < A1 then
A1.insert(item)

cnt ← cnt + 1
if cnt = na then

A2.flush(); swap(A1,A2); cnt ← 0

end if
end if

the total memory footprint of the LRU-AC can overtake the high-speed BRAM (Block RAM [42])

available in the hardware – notwithstanding the BRAM that needs to be allocated for, e.g., packet

queues. Furthermore, the access time to an LRU element is not constant (as a hash map provides

only amortized constant time for read operations), which renders it undesirable for hardware

implementation [16]. Thus, in this section, we explore Ageing Bloom Filters (ABF) as an alternative

data-structure to implement the LRU-AC. After a brief description of the ABF behavior (Section 5.1),

a predictive model similar to Che’s approximation (Equation (2)) for the hit-rate of the ABF is

presented (Section 5.2). The model is verified by way of simulation (Section 5.3) and memory gains

compared to standard LRU implementations are evaluated (Section 5.4).

5.1 Ageing Bloom filters
A popular and natural structure for storing sets in programmable hardware are Bloom filters [43–

45]. They provide a compact and efficient way to store set membership with a controllable error

probability as the only trade-off. In particular, Bloom filters have been proposed to store network

identifier for high-performance packet forwarding [45, 46]. Thus, using a Bloom filter to store

the content of the LRU-AC seems like a promising step towards hardware implementation. The

LRU-AC, however, requires the ability to evict old content from the cache, which standard Bloom

filters do not support. To replicate this behavior, Yoon introduced Ageing Bloom Filters (ABF) [17].

An ABF consists of two parallel Bloom filters: the active Bloom filter A1, used to learn the most

recent items, and the passive Bloom filter A2, which holds older items in memory. It has two

parameters: na , the maximum number of items that each filter holds, and fp , a target false positive
rate. The functioning of the ABF is summarized in Algorithm 1. In steady state, the passive filter

A2 holds exactly na different items. The active filter A1 holds 0≤cnt <na items, some redundantly

with A2. An item is said to be in the ABF if it belongs to either A1 or A2. Insertion is done only in

the active filter A1 until it holds na unique items. At this point, A2 is swapped with A1, and the

active filter is reinitialized. This ensures that the ABF contains at least the last na different items

received, and at most 2na . However, there are redundancies between A1 and A2, the exact number

of objects in the ABF is a stochastic process.

5.2 Hit-rate approximation for the ABF
To replace the LRU-AC with an ABF, the expected hit-rate of the ABF must be evaluated. Indeed, as

shown in Section 4.4, the hit-rate distribution is the major factor that explains the performance

of the LRU-AC. While for brevity reasons, only the major ideas behind the model derivation are

presented here, a complete explanation is provided in [38].

As in Section 3, Zipf arrivals under IRM are assumed. Let us consider |A1 ∪A2 | (k) the stochastic
process representing the number of unique elements in an ABF after k arrivals. First, as depicted in

Figure 5, one can observe that the behavior of an ABF is cyclic (except for the bootstrap, during

which A2 is empty). At a given time, its behavior only depends on the arrivals which occurred after

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 13

0 K1 K2 K3 K4

Number of draws

0

na
N

um
b

er
of

un
iq

ue
el

em
en

ts E[A1]

E[A2]

E[A1 ∪ A2]

f(k)

Ñ

Fig. 5. Number of distinct elements in the active filter A1 (··), in the passive filter A2 (- -) and in the full filter
A1 ∪A2 (–), as well as the function f (k) (–) used to compute them and the stochastic average Ñ of |A1 ∪A2 |.

the second-to-last flush-and-swap operation, as the memory of events that occurred before that

point has been flushed. Therefore (and since arrivals are memoryless due to the IRM assumption), it

suffices to analyze the behavior of the filter during the second cycle. Let us denote byK1 (respectively

K2) the number of steps necessary to complete the first (respectively second) cycle:

K1 = min{k ≥ 0 : |A1 |(k) = na}

K2 = min{k ≥ K1 : |A1 |(k) = na}

We will thus study the behavior of the filter in [K1,K2).

Approximating K1 and K2. For k ≤K2, the probability hk (r) that content r is in the filter after

k ≤K2 draws is simply the probability that it was selected at least once from the k draws:

hk (r)
def

= P[r ∈ (A1 ∪A2)(k)|K2 ≥ k] = 1 − (1 − q(r))k

Thus, the expected number f (k) of items in the filter after k draws is:

f (k)
def

= E[|A1 ∪A2 |(k) |K2 ≥ k] = E[
R∑
r=1

1r ∈(A1∪A2)(k) |K2 ≥ k] =
R∑
r=1

hk (r) =
R∑
r=1

[1 − (1 − q(r))k]

It is possible to prove, using Chernoff bounds (see [38]) that K1 (the number of steps necessary for

there to be na items in A1) deviates little from k̂1, the number of steps necessary for there to be na
items in average in A1, defined as:

k̂1
def

= f −1(na) (6)

Due to the cyclic behavior of the filter, K2 is then naturally approximated as K2 ≈ 2k̂1.

It is then possible to efficiently find k̂1 by using an approximation for f (k), rather than in-

verting a sum with R elements. Assuming a Zipf catalogue with a parameter α > 1/2 (i.e.,
q(r) = r−α

HR ,α
with HR,α =

∑R
i=1 i

−α
), we have:

f (k) ≈

{
Ak − Bk logk if α = 1

Ak − Bk1/α if α ∈ (1/2, 1) ∪ (1,+∞)
(7)

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

where: 
A =

R1−α

(1 − α)HR,α
if α >

1

2

,α , 1; 1 +
1 + log logR − 2γ

logR + γ
if α = 1

B =
Γ(−1/α)

αH 1/α
R,α

if α >
1

2

,α , 1;

1

logR + γ
if α = 1

(8)

where Γ(z) is the gamma function and γ ≈ 0.577 the Euler-Mascheroni constant. The derivation is

provided in [38].

Approximating the hit rate. As introduced in the previous section, the hit rate hk (r) for content
r after k ≤ K2 draws from the catalogue is: hk (r) = 1 − (1 − q(r))k . Thus, the (stochastic) hit rate
H (r) for content r when observed at an instant Kobs drawn uniformly during the cycle [K1,K2) is:

H (r)
def

= E[1r ∈(A1∪A2)(Kobs) |K1,K2] =
1

K2 − K1

∑
K1≤k<K2

[
1 − (1 − q(r))k

]
and the corresponding average hit rate h(r) is:

h(r)
def

= E[H (r)] = E

[
1

K2 − K1

∑
K1≤k<K2

[
1 − (1 − q(r))k

]]
Since (as argued in the previous section) K1 and K2 can be approximated by k̂1 and 2k̂1, respectively,
we can further provide an approximation ha(r) of h(r) as:

h(r) ≈
1

k̂1

∑
k̂1≤k<2k̂1

[
1 − (1 − q(r))k︸ ︷︷ ︸
≈1−e−kq(r)

]
≈

1

k̂1

∫
2k̂1

k̂1

[
1 − e−kq(r)

]
dk

def

= ha(r)

Using tC (r) = k̂1 +
1

q(r) log
k̂1q(r)

1−e−k̂1q(r)
∈ [k̂1,

3

2
k̂1], simple algebra then yields:

ha(r) = 1 − e−q(r)tC (r) (9)

A Che-like approximation. For large values of r , tC (r) exhibits very little variation: a Taylor

expansion shows that tC (r) ≈
3

2
k̂1 −

q(r)
24

k̂1
2

. For small values of r , tC (r) varies more, but its

contribution to h(r) can be neglected as h(r) ≈ 1 in those cases, as argued in [24] (figures depicting

this phenomenon are available in [38]). Therefore, it is possible to make the approximation that

tC (r) is a constant tC , yielding:

ha(r) ≈ 1 − e−q(r)tC (10)

In that case, by summing over r ∈ {1, . . . ,R}, tC can be computed by finding the root of:

R∑
r=1

[1 − e−q(r)tC] =
R∑
r=1

ha(r)
def

= Ñ (11)

where Ñ represents the average number of items in the filter, and can be computed with: Ñ ≈

1

k̂1

∫
2k̂1
k̂1

f (k)dk using the approximation of f (k) provided in the previous section and straightforward

integration. This is similar to the Che approximation (see Equation (2)), with the (fixed) size of

the LRU cache replaced by the average over time of the “size” (number of distinct items) of the

ABF. Functions for computing k̂1 and na depending on kLRU are provided in the Jupyter Notebook

associated with this paper [41]. For instance, kLRU=2.8·10
5
(as in Table 4) yields na=2.0·10

5
.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 15

101 102 103 104 105 106

ABF parameter na

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

h
it

ra
te

α = 0.8

α = 0.9

α = 1

α = 1.1

α = 1.2

Fig. 6. Simulation results (×) and model results (plain lines) for the expected hit-rate of the ABF, as a function
of na (R=107 and α ∈ {0.8, 0.9, 1, 1.1, 1.2}). Each simulation point consists of the average value on 10

8 arrivals.

5.3 Model verification
To verify the model, a software implementation of the ABF was subjected to a Poisson arrival

process with Zipf popularity distribution, for α ∈ {0.8, .9, 1, 1.1, 1.2}. In particular, the accuracy of

Equation (10) is shown in Figure 6, which compares the average hit-rate

∑
r q(r)ha(r) computed

from the approximation of Equation (10) with the measured average hit-rate in simulation runs. It

shows that the model fits almost perfectly with the experiments, with a relative difference < 0.5%
for na ≥ 1000.

5.4 ABF - memory usage vs LRU
LRU memory. A simple LRU implementation consists of a hash map pointing to a doubly-linked

list. Each LRU entry has a memory footprint at least equal to the size of 3 pointers (one in the hash

map and two in the list). The minimal pointer size is ⌈log
2
kLRU ⌉. To compare the ABF to the LRU

and according to Equation (11), kLRU = Ñ is used. Thus, the memory used by the LRU is:

mLRU = 3Ñ ⌈log
2
Ñ ⌉ (12)

ABF memory. Let fp be the wished false-positive rate of the ABF. The corresponding false-

positive rate of A1 and A2 is fa = 1 −
√
1 − fp [17]. The corresponding number of hash-functions is

nh = ⌈− log2(1−
√
1 − fp)⌉, and the corresponding memory consumption of the ABF ismABF=

2nanh
log 2

,

yielding:

mABF =
2na ⌈− log2(1 −

√
1 − fp)⌉

log 2

(13)

Numerical results. For kLRU = 2.8 ·105 (as in Table 4), the minimal pointer size is 19 bits (since

log
2
(kLRU) ≈ 18.1). The required memory per element adds up to 57 bits. In total, this amounts

tomLRU =16Mbit. By comparison, the corresponding ABF has for parameter na =2.0·10
5
. For a

false positive rate of fp =1%, Equation (13) yieldsmABF =4.6Mbit, dividing the LRU-AC memory

footprint by 4. Furthermore, let us note that while the computation ofmABF is exact, the computation

ofmLRU is conservative. Indeed, implementing a hash-table requires a significant memory overhead

and creates a memory vs operation-latency trade-off.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

6 HARDWARE-IMPLEMENTATION OF THE LRU-AC
6.1 Using hICN as the underlying network layer
To guarantee line-rate performances, the hardware-accelerated AC must be able to access the

request identifier easily. While extracting application-level semantics from packets (deep-packet

inspection) is possible in hardware using frameworks such as P4 [20], it is costly in terms of cycles.

Therefore, the performance of the AC hardware module would profit from a network framework

that exposes application semantics at a low-level, but that also provide a deterministic packet

format (through fixed-size headers with fixed field locations).

In that regard, hICN [19] is an ideal candidate. hICN is an implementation of ICN [47] that

transparently uses the TCP/IPv6 packet format for backward-compatibility. In particular, while

hICN is a name-based protocol (i.e., forwarding is performed based on named-content identifiers

rather than locators), names are encoded using an IPv6 address for a name prefix (64 bits of routable

prefix and 64 bits of data identifier) and a 32-bit integer for the name suffix. An Interest (resp.

Data) packet then carries the name prefix in the IPv6 destination (resp. source) address field, while

the name suffix is placed in the TCP segment number field. As such, hICN holds the desirable

characteristics for implementing the LRU-AC in hardware: request semantics accessible in fixed-size
fields in fixed locations of the network and transport headers.

6.2 Hardware-implementation of the LRU-AC
To demonstrate implementability of the LRU-AC in hardware, the NetFPGA-SUME [18], a state-

of-the-art academic programmable network cards, was used. To provide a modular and easily-

modifiable implementation, the prototype is implemented in P4 [20], allowing packet parsing to be

performed in a high-level language. The P4→NetFPGA framework [48] is then used to translate

that high-level representation into a NetFPGA-SUME implementation.

The prototype comprises two parts: (i) a Bloom filter atom7
written in Verilog, that implements

a single Bloom filter; and (ii) a P4 data-plane, which performs packet parsing, processing, and

deparsing, and whose processing part implements an ABF by using two Bloom filters atoms. Using

a Bloom filter atom and implementing the ABF logic in P4 rather than directly implementing the

ABF as a black-box Verilog module provides greater modularity and expressiveness in the high-level

language and simplifies the engineering effort by having to focus on optimizing only a single and

simpler low-level module. The Bloom filter atom has been upstreamed to the P4-NetFPGA project.

Bloom filter atom. The Bloom filter atom takes a fixed-length key of size skey in argument, as

well as an operand specifying the operation to be performed on that key (read or insert), and returns

a single bit specifying whether the key was found in the filter – in case of an insert operation,

whether the key was found before insertion. Additionally, a third operand allows resetting the filter

(i.e., clearing all its bits). This allows exporting a very simple API:

void bloom_filter(in bit <2> opcode , in bit <KEY_SIZE > index , out bit <1> result);

The Bloom filter is parameterized by the number nh of hash functions, and the size shash of their

output – governing the number of addressable objects. Each hash function hi (i ∈ {1, . . . ,nh}) is
implemented using universal hashing [50]. Indeed, universal hashing relies only on multiplication,

XOR and shift operations, and can thus be efficiently implemented on the NetFPGA-SUME (using

multiplier blocks), with a latency of one cycle.

To optimize throughput and latency, the Bloom filter is implemented with a pipelined approach,

as depicted in Figure 7. The idea is to use each cycle to query one bit (at the address dictated by

7
Atoms are low-level modules that can handle state and perform a simple operation, while interfacing with a higher-level

packet processing language [49].

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 17

compute
h[1]

compute
h[2]

query
RAM[h[1]]

query
RAM[h[2]]

retrieve
RAM[h[1]]

retrieve
RAM[h[2]]

retrieve
RAM[h[3]]

query
RAM[h[3]]

query
RAM[h[4]]

compute
h[3]

compute
h[4]

retrieve
RAM[h[4]]

write
output

fetch
input

AND
results

cycles

Fig. 7. Bloom filter pipeline illustration with nh = 4: latency is 7 cycles, throughput is one operation per 8
cycles.

Table 5. Resource usage of a Bloom filter atom

shash skey Logic (LUTs) Registers BRAM Multipliers

20 24 185 134 33 2

21 24 246 152 65 2

22 24 357 186 129 2

20 48 281 178 33 4

21 48 317 196 65 4

22 48 431 230 129 4

one of the nh hash functions), for a total of approximately nh cycles. Since querying the BRAM

has a 2-cycle latency and hash function computation uses a full cycle, the i-th hash function is

computed at cycle i and the corresponding bit is queried at cycle i + 1 for a result retrieved at cycle

i + 3. The final result is then output at cycle nh + 4, after ANDing all the intermediary results. In

sum, the Bloom filter has a latency of nh + 3 cycles and a throughput of 1 operation every nh + 4
cycles. In terms of spatial complexity, in addition to the LUTs (Look-Up Tables, the fundamental

reconfigurable logic blocks in FPGAs) required to implement the logic, the module uses 2
shash−15

blocks of BRAM (of size 32 Kbit). Table 5 reports the resource usage of a single Bloom filter after

synthesis, for different values of skey and shash .

P4 data plane. The P4 data plane leverages the simplicity of having defined an external Bloom

filter atom to provide a simple implementation. It comprises four components: (i) a parser, which

extracts Ethernet and IPv6 headers and stores the hICN object key, (ii) an action, which implements

the ABF logic to determine the egress interface for the packet, (iii) a match-action table, which maps

that interface to an Ethernet address, and (iv) a deparser, which reconstructs the output packet.

(i), (iii) and (iv) are straightforward to implement in P4. (ii) is implemented through four external

atoms: two Bloom filters, a flag that keeps track of the active Bloom filter, and a counter that keeps

track of the number of requests since the last swapping event. Predicated-read-add-write registers

available from the P4-NetFPGA framework [49] are used to implement the counter and the flag.

The counter is incremented if its value is smaller than k̂1 and reset when it reaches k̂1
8
. The flag is

swapped when the counter has just been reset. Depending on the value of the flag and on whether

it has just been swapped, suitable (read, write or clear) operations are sent to the two Bloom filters,

8k̂1 is used as a threshold on the number of steps rather than na on the number of elements in the filter because the

reg_ifElseRaw atom can only be accessed once per packet in the P4-NetFPGA workflow. To use na , the counter would
have to be read before querying the filters (to decide whether to swap) and updated after the queries have completed (to

count the number of active elements). The validity of using k̂1 comes from Equation (6).

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

0.00 0.02 0.04 0.06 0.08 0.10
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(a) Head (Fog+Cloud)

10−1 100 101 102

Request completion time (s)

0.95

0.96

0.97

0.98

0.99

1.00

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(b) Tail (Fog+Cloud)

0 200 400 600
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(c) Fog

0.00 0.05 0.10 0.15
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(d) Cloud

Fig. 8. Cumulative distribution functions of the measured request response time for the LRU- and ABF-AC

along with the key extracted from the packet. Finally, the output port is chosen, depending on the

OR of the result of the two queries.

7 EVALUATION
In this section, an evaluation of the FPGA-based LRU-AC (named ABF-AC in this section to

distinguish it from the LRU-AC implemented with an actual LRU filter) is presented. First, packet-

level simulation is used to compare the ABF-AC to the LRU-, LFU- and Blind-AC. Then, the

throughput and processing speed of the FPGA implementation is evaluated.

7.1 Packet-level simulation
To provide insights about the fine-grained behavior of the schemes introduced in Section 4, packet-

level simulations of the queueing network introduced in Section 3 using the different AC strategies.

The simulator, written in Rust and available in open-source [41], is a general-use queueing simulator

designed to allow quick specification and testing of queueing networks. In this section, it is set

up with the values presented in Table 3 and the AC modules with the values computed in Table 4.

The ABF filter is configured with k̂1 = 5.2·105 (computed through Equation (6)) and fp = 1%.

The interested reader can use the Jupyter notebook provided with the simulator to find the filter

parameters tailored to their own scenario and set up the simulator accordingly.

In a first step, the per-packet response time of the LRU-AC is considered. Figure 8 shows the

cumulated distribution function (CDF) for both the ABF- and LRU-AC. For the sake of clarity, the

head and the tail of the distribution are represented in resp. Figure 8a and Figure 8b, while individual

CDFs for the Fog and Cloud paths are represented in Figure 8c and Figure 8d. The only visible

difference between the LRU- and the ABF-based implementations is the spread of the distribution,

which concerns only 0.1% of requests, thus justifying the validity of the ABF-AC. Of further note is

the length of the queue, which goes up to 600s. As shown by Figure 8, this is due to the effect of

the tri-modal nature of the distribution on the problem formulated in Equation (1). Indeed, a large

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 19

0.0 0.1 0.2 0.3
Request completion time (s)

0.0

0.5

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

Fig. 9. Cumulative distribution function of the measured response time for conservative settings of the LRU-
and ABF-AC

Table 6. Request breakdown and threshold excess rate for the Blind-, LFU-, LRU-, and ABF-AC

Request breakdown Threshold excess rateFog cache Fog compute Cloud
Blind 5.3% 3.0% 92% 4.0%

LFU 71% 3.6% 25% 3.2%

LRU 68% 3.8% 29% 4.9%

ABF 67% 3.9% 29% 4.9%

Table 7. NetFPGA Dataplane performance

FPGA resource usage Forwarding performance
LUTs BRAM Power (W) Latency (µs) 2.62

2 Bloom filters 715 130 0.089 Throughput (Mpps) 16.7

P4 103424 564 8.550

Total 104139 694 8.639

Available resources 433200 1470 —

Resource consumption 24.0 % 47.2 % —

percentage of requests are processed with a latency≪ ∆. Thus, the constraint E[T] ≤ ∆ can tolerate

a long tail, which might be a problem for real-life applications (even if 99% of the requests are

completed under a minute). For operators with stricter latency constraints, the length of the queue

can be reduced by slightly modifying the value of kLRU and k̂1. For instance, artificially reducing the

load on the Fog by 5 percentage points by setting kLRU=1.3·10
5
(resp. k̂1=2.3·10

5
) allows reducing

the distribution spread to about 0.3 s and the threshold excess rate (i.e., % of requests with service

time ≥ ∆) to 1% for a 16% cost increase for both implementations, as depicted in Figure 9.

In a second step, Table 6 shows the request path repartition and the threshold excess rate for

the Blind-, LFU-, and both implementations of the LRU-AC. It highlights that the threshold excess

rate is of the same magnitude between all schemes, with probabilistic LRU-AC just slightly higher.

Furthermore, it illustrates again the strong difference between on one side the LFU- and LRU-AC,

which handle about 70% of the requests in the Fog, and the Blind-LB, which sends more than 90%

of the requests in the Cloud. Popularity-based AC thus seems an appropriate approach to take

maximum advantage of edge resources.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

7.2 Implementation evaluation
The P4 data plane introduced in Section 6.2 has been synthesized for the NetFPGA-SUME platform

with the P4→NetFPGA framework. The targeted false positive rate is fa = 1%, yielding nh = 8.
The maximum number of elements in the ABF is taken to be na = 9.2·10

4
(corresponding to an

equivalent LRU filter size kLRU =1.3·10
5
, i.e., the conservative settings introduced in Section 7.1),

yielding
mABF

2
=2.1·106 bits in each filter. Thus, one must take shash = ⌈log2

mABF
2
⌉=21 to be able

to address all elements in each filter. Finally, we take a key of skey =48 bits, allowing to address up

to 280 · 1012 objects, way above the catalogue size R = 10
7
.

Resource usage on the FPGA board is reported in Table 7. As can be seen by comparing these

results to those in Table 5, most of the logic (LUT) is consumed by the NetFPGA framework (MAC

for the network interfaces and packet processing). However, an important part of the BRAM

resources is consumed by the Bloom filter modules. In total, the BRAM usage is 47%, confirming

that the limits of the platform are reached and that a standard LRU filter (which would consume 4×

more memory as shown in Section 5.4) could not be implemented.

The performance of the P4 data plane is evaluated by injecting in the FPGA simulator a batch

of 4096 packets (directly after the Ethernet interface, so as to outreach the 10 Gbps limit), and

measuring the corresponding latency and throughput. Results are reported in Table 7, showing

that packets can be forwarded over the 10 Gbps line-rate (14.4 Mpps) while providing low latency.

The obtained throughput results are consistent with the throughput of the Bloom filter atom (one

operation every nh + 4 = 12 cycles at 200 MHz).

8 RELATEDWORK
The importance of locating computing resources topologically close to users has been put forward

under diverse forms in the community: Fog computing [1], Mobile-Edge-Computing [51], hybrid

Cloud [12]. In particular, Niu et al. [12] explore a similar problem to ours: the use of a local Cloud

infrastructure to handle sudden bursts of traffic. They also use a Markov-chain based model for

computing the expected completion time and devise a scheduling algorithm between hybrid and

public Cloud using an optimization problem under budget constraints. However, they do not exploit

any knowledge of the request popularity, thus falling under the hard limit that we exposed for the

Blind-AC. Malawski et al., study costs optimization between a hybrid Cloud and multiple public

Clouds with different pricing models under a deadline constraint [52]. However, they focus on

task optimization, looking at a model closer to scheduling for scientific computing rather than live

optimization of user requests. Du et al. [13] formulate a joint resource allocation and offloading

between user devices, Fog networks and Cloud networks, so as to minimize energy consumption

and request processing delay.

Using popularity to load-balance content in ICN networks has already been explored. In [22],

the authors propose to count incoming packets and use exponential smoothing. As argued in

Section 4.3, this approach is not flexible to popularity changes and requires knowledge of the

application. Furthermore, the authors aim at load-balancing packets over homogeneous paths,

whereas the Fog/Cloud offload problem is essentially heterogeneous. Similarly, the authors of [23]

propose to use a k-LRU filter to learn popularity for load-balancing ICN interests over multiple

paths. They then measure per-name latency to optimize the distance to the next object. However,

the authors do not specify the settings of the k-LRU filter, and only consider the effect of their

load-balancing on the data creation process. Finally, in [6], the authors use the ICN-Fog node as a

classifier between static and dynamic data, thus preventing upstream caches to store dynamic data.

They do not, however, consider the data processing that happens in many Fog applications.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Efficient latency control in Fog deployments via hardware-accelerated popularity estimation 21

9 CONCLUSION
In this paper, methods for guaranteeing response time in Fog deployments based on popularity-

aware AC were introduced. Two specific AC schemes were introduced: the oracle-based LFU-AC

and the probabilistic LRU-AC. Their effectiveness was demonstrated using an analytical model

for various application parameters. An implementation of the LRU-AC on state-of-the-art FPGA

hardware using ABF was then proposed and its soundness was demonstrated through analytical

modeling. This implementation is shown to provide AC at 10 GbE line-rate throughput with a 3 µs

latency. It increases the Fog acceptance rate by almost 10× w.r.t. content-blind approaches while

maintaining the latency excess rate stable. A future research question which remains open by this

work is the study of a concrete application scenario with real traffic traces, for instance in a smart

city setup.

REFERENCES
[1] F. Bonomi et al., “Fog computing and its role in the internet of things,” in Proc. 1st Edition Workshop Mobile Cloud

Computing. ACM, 2012.

[2] K. Hong et al., “Mobile fog: A programming model for large-scale applications on the internet of things,” in Proc. 2nd
SIGCOMM Workshop Mobile Cloud Computing. ACM, 2013.

[3] M. Taneja and A. Davy, “Resource aware placement of IoT application modules in Fog-Cloud computing paradigm,” in

2017 IFIP/IEEE Symp. Integrated Network and Service Manage. (IM), May 2017, pp. 1222–1228.

[4] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application module management for Fog computing

environments,” ACM Trans. Internet Technology, vol. 19, no. 1, Nov. 2018.
[5] J. Khan, C. Westphal, and Y. Ghamri-Doudane, “A content-based centrality metric for collaborative caching in

information-centric fogs,” in IFIP-Networking - ICFC, 2017.
[6] M. Wang et al., “Fog computing based content-aware taxonomy for caching optimization in information-centric

networks,” in IEEE Conf. Comput. Commun. Workshops, May 2017.

[7] Z. Chen et al., “An empirical study of latency in an emerging class of edge computing applications for wearable

cognitive assistance,” in Proc. 2nd ACM/IEEE Symp. Edge Computing. ACM, 2017.

[8] M. Chiang, B. Balasubramanian, and F. Bonomi, Fog for 5G and IoT. John Wiley & Sons, 2017.

[9] “Aws greengrass,” https://aws.amazon.com/greengrass.

[10] A. Rauniyar et al., “Crowdsourcing-based disaster management using fog computing in internet of things paradigm,”

in 2016 IEEE 2nd international conference on collaboration and internet computing (CIC). IEEE, 2016, pp. 490–494.

[11] Z. Su et al., “A secure content caching scheme for disaster backup in fog computing enabled mobile social networks,”

IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4579–4589, 2018.
[12] Y. Niu et al., “Handling flash deals with soft guarantee in hybrid cloud,” in Proc. INFOCOM. IEEE, 2017.

[13] J. Du et al., “Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max

fairness guarantee,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608, 2018.
[14] R. B. Miller, “Response time in man-computer conversational transactions,” in Proc. AFIPS Fall Joint Comput. Conf.,

1968.

[15] M. Enguehard, G. Carofiglio, and D. Rossi, “A popularity-based approach for effective cloud offload in fog deployments,”

in 2018 30th Int. Teletraffic Congr. (ITC 30), vol. 1. IEEE, 2018, pp. 55–63.

[16] M. Blott et al., “Achieving 10gbps line-rate key-value stores with fpgas.” in HotCloud, 2013.
[17] M. Yoon, “Aging bloom filter with two active buffers for dynamic sets,” IEEE Trans. Knowledge and Data Eng., vol. 22,

no. 1, pp. 134–138, 2010.

[18] N. Zilberman et al., “Netfpga sume: Toward 100 gbps as research commodity,” IEEE micro, vol. 34, no. 5, pp. 32–41, 2014.
[19] L. Muscariello et al., “Hybrid Information-Centric Networking,” Internet Engineering Task Force, Internet-Draft

draft-muscariello-intarea-hicn-00, Jun. 2018, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/

html/draft-muscariello-intarea-hicn-00

[20] P. Bosshart et al., “P4: Programming protocol-independent packet processors,” ACM SIGCOMMComput. Communication
Review, vol. 44, no. 3, pp. 87–95, jul 2014.

[21] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application deadlines in cloud workflows,” in Proc.
of 2011 Int. Conf. for High Performance Computing, Networking, Storage and Anal. ACM, 2011.

[22] T. Janaszka, D. Bursztynowski, and M. Dzida, “On popularity-based load balancing in content networks,” in Proc. 24th
Int. Teletraffic Congr., 2012, p. 12.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-00

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Marcel Enguehard, Yoann Desmouceaux, and Giovanna Carofiglio

[23] G. Carofiglio, L. Mekinda, and L. Muscariello, “Focal: Forwarding and caching with latency awareness in information-

centric networking,” in Globecom Workshops. IEEE, 2015, pp. 1–7.

[24] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for lru cache performance,” in Proc. 24th
Int. Teletraffic Congr., 2012.

[25] G. Rossini and D. Rossi, “Evaluating ccn multi-path interest forwarding strategies,” Computer Communications, vol. 36,
no. 7, pp. 771–778, 2013.

[26] L. Breslau et al., “Web caching and zipf-like distributions: Evidence and implications,” in Proc. INFOCOM, vol. 1. IEEE,

1999.

[27] C. Imbrenda, L. Muscariello, and D. Rossi, “Analyzing cacheable traffic in isp access networks for micro cdn applications

via content-centric networking,” in Proc. 1st ACM SIGCOMM Conf. Inform.-Centric Networking, Sep 2014.

[28] S. Traverso et al., “Temporal locality in today’s content caching: why it matters and how to model it,” ACM SIGCOMM
Comput. Communication Review, vol. 43, no. 5, 2013.

[29] B. Urgaonkar et al., “An analytical model for multi-tier internet services and its applications,” ACM SIGMETRICS
Performance Evaluation Review, vol. 33, no. 1, pp. 291–302, 2005.

[30] M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of world wide web traffic for capacity dimensioning of

internet access lines,” Performance evaluation, vol. 34, no. 4, 1998.
[31] J. Boyer et al., “Heavy tailed m/g/1-ps queues with impatience and admission control in packet networks,” in Proc.

INFOCOM, vol. 1. IEEE, 2003.

[32] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design and experimental results,” J. Select.
Areas in Commun., vol. 20, no. 7, 2002.

[33] F. P. Kelly, Reversibility and stochastic networks. Cambridge University Press, 2011.

[34] G. F. Newell, “The m/g/∞ queue,” J. Appl. Math., vol. 14, no. 1, 1966.
[35] Y. Desmouceaux et al., “A content-aware data-plane for efficient and scalable video delivery,” in Proc. 16th IFIP/IEEE Int.

Symp. Integrated Network Manage., 2019, to appear.

[36] D. Shasha and T. Johnson, “2q: A low overhead high performance buffer management replacement algoritm,” in Proc.
20th Int. Conf. Very Large Databases, 1994.

[37] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the performance analysis of caching systems,” ACM
Trans. Modeling and Performance Evaluation of Computing Syst., vol. 1, no. 3, p. 12, 2016.

[38] M. Enguehard, Y. Desmouceaux, and G. Carofiglio, “Efficient latency control in Fog deployments via hardware-

accelerated popularity estimation (technical report),” https://enguehard.org/papers/lru-ac-techrep2019.pdf, 2019.

[39] K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Int. J. Numerical Methods
in Eng., vol. 24, no. 2, 1987.

[40] S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt.

[41] M. Enguehard and Y. Desmouceaux, “marceleng/queueing-network-simulator: a simulator for queueing networks,”

https://github.com/marceleng/queueing-network-simulator, Jan 2019.

[42] J.-L. Brelet, “Using block ram for high performance read/write cams,” Xilinx Inc., Application Notes, vol. 204, 2000.
[43] S. Dharmapurikar et al., “Deep packet inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp. 52–61, jan

2004.

[44] H. Song et al., “Fast hash table lookup using extended bloom filter: an aid to network processing,” ACM SIGCOMM
Comput. Communication Review, vol. 35, no. 4, pp. 181–192, 2005.

[45] ——, “IPv6 lookups using distributed and load balanced bloom filters for 100gbps core router line cards,” in Proc. 28th
IEEE Conf. Comput. Commun. (INFOCOM), IEEE. IEEE, apr 2009, pp. 2518–2526.

[46] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom filter forwarding architecture for large organizations,” in Proc.
5th Int. Conf. Emerging Networking Experiments and Technologies - CoNEXT’09, ACM. ACM Press, 2009, pp. 313–324.

[47] G. Xylomenos et al., “A survey of information-centric networking research,” IEEE Commun. Surveys and Tutorials,,
vol. 16, no. 2, pp. 1024–1049, Jul. 2014.

[48] S. Ibanez et al., “The P4→ NetFPGA workflow for line-rate packet processing,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 2019, pp. 1–9.

[49] A. Sivaraman et al., “Packet transactions: High-level programming for line-rate switches,” in Proc. 2016 ACM SIGCOMM
Conf. ACM, 2016, pp. 15–28.

[50] M. Dietzfelbinger et al., “A reliable randomized algorithm for the closest-pair problem,” J. of Algorithms, vol. 25, no. 1,
pp. 19–51, 1997.

[51] Y. C. Hu et al., “Mobile edge computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11, 2015.
[52] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization for computational applications on hybrid cloud infras-

tructures,” Future Generation Comput. Syst., vol. 29, no. 7, 2013.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: August 2019.

https://enguehard.org/papers/lru-ac-techrep2019.pdf

	Abstract
	1 Introduction
	2 Problem description
	2.1 Reference Fog architecture
	2.2 Fog vs Cloud admission control

	3 An analytical model
	3.1 Application model and request distribution
	3.2 Queueing model
	3.3 Computing the statistical latency
	3.4 Computing the cost function
	3.5 An example application - Numerical parameters

	4 Popularity-based Fog admission
	4.1 Blind AC
	4.2 LFU-AC strategy
	4.3 The LRU-AC strategy
	4.4 Preliminary evaluation of the AC strategies

	5 Ageing Bloom Filters for a hardware-accelerated LRU-AC
	5.1 Ageing Bloom filters
	5.2 Hit-rate approximation for the ABF
	5.3 Model verification
	5.4 ABF - memory usage vs LRU

	6 Hardware-implementation of the LRU-AC
	6.1 Using hICN as the underlying network layer
	6.2 Hardware-implementation of the LRU-AC

	7 Evaluation
	7.1 Packet-level simulation
	7.2 Implementation evaluation

	8 Related Work
	9 Conclusion
	References

