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Abstract

With the development of demand for computing resources, data center architectures are growing
both in scale and in complexity. In this context, this thesis takes a step back as compared to
traditional network approaches, and shows that providing generic primitives directly within the
network layer is a great way to improve efficiency of resource usage, and decrease network traffic
and management overhead. Using two advanced network architectures, Segment Routing (SR)
and Bit-Indexed Explicit Replication (BIER), network layer protocols are designed and analyzed
to provide three high-level functions: (1) task mobility, (2) reliable content distribution and (3)
load-balancing.

First, task mobility is achieved by using SR to provide a zero-loss virtual machine migration
service. This then opens the opportunity for studying how to orchestrate task placement and
migration while aiming at (i) maximizing the inter-task throughput, while (ii) maximizing the
number of newly-placed tasks, but (iii) minimizing the number of tasks to be migrated. Second,
reliable content distribution is achieved by using BIER to provide a reliable multicast protocol, in
which retransmissions of lost packets are targeted towards the precise set of destinations having
missed that packet, thus incurring a minimal traffic overhead. To decrease the load on the source
link, this is then extended to enable retransmissions by local peers from the same group, with
SR as a helper to find a suitable retransmission candidate. Third, load-balancing is achieved
by way of using SR to distribute queries through several application candidates, each of which
taking local decisions as to whether to accept those, thus achieving better fairness as compared to
centralized approaches. The feasibility of hardware implementation of this approach is investigated,
and a solution using covert channels to transparently convey information to the load-balancer is
implemented for a state-of-the-art programmable network card. Finally, the possibility of providing
autoscaling as a network service is investigated: by letting queries go through a fixed chain of
applications using SR, autoscaling is triggered by the last instance, depending on its local state.

Keywords — Data-center networking, Task Mobility, Multicast, Load Balancing, Segment
Routing
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Résumé

Du fait de la croissance de la demande en ressources de calcul, les architectures de centres
de données gagnent en taille et complexité. Dès lors, cette thèse prend du recul par rapport aux
architectures réseaux traditionnelles, et montre que fournir des primitives génériques directement à
la couche réseau permet d’améliorer l’utilisation des ressources, et de diminuer le trafic réseau et le
surcoût administratif. Deux architectures réseaux avancées, Segment Routing (SR) et Bit-Indexed
Explicit Replication (BIER), sont utilisées pour construire et analyser des protocoles de couche
réseau, afin de fournir trois primitives : (1) mobilité des tâches, (2) distribution fiable de contenu,
et (3) équilibre de charge.

Premièrement, pour la mobilité des tâches, SR est utilisé pour fournir un service de migra-
tion de machine virtuelles sans perte. Cela ouvre l’opportunité d’étudier comment orchestrer le
placement et la migration de tâches afin de (i) maximiser le débit inter-tâches, tout en (ii) maxi-
misant le nombre de nouvelles tâches placées, mais (iii) minimisant le nombre de tâches migrées.
Deuxièmement, pour la distribution fiable de contenu, BIER est utilisé pour fournir un protocole
de multicast fiable, dans lequel les retransmissions de paquets perdus sont cibleés vers l’ensemble
précis de destinations n’ayant pas reçu ce paquet : ainsi, le surcoût de trafic est minimisé. Pour di-
minuer la charge sur la source, cette approche est étendue en rendant possibles des retransmissions
par des pairs locaux, utilisant SR pour trouver un pair capable de retransmettre. Troisièmement,
pour l’équilibre de charge, SR est utilisé pour distribuer des requêtes à travers plusieurs applica-
tions candidates, chacune prenant une décision locale pour accepter ou non ces requêtes, fournis-
sant ainsi une meilleure équité de répartition comparé aux approches centralisées. La faisabilité
d’une implémentation matérielle de cette approche est étudiée, et une solution (utilisant des ca-
naux cachés pour transporter de façon invisible de l’information vers l’équilibreur) est implémentée
pour une carte réseau programmable de dernière génération. Finalement, la possibilité de fournir
de l’équilibrage automatique comme service réseau est étudiée : en faisant passer (avec SR) des
requêtes à travers une châıne fixée d’applications, l’équilibrage est initié par la dernière instance,
selon son état local.

Mots-clefs — Réseaux de centres de données, Mobilité, Multicast, Équilibre de charge, Seg-
ment Routing
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Tout d’abord, je tiens à remercier chaudement Thomas Clausen pour avoir été mon directeur de
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Sai, Arthur Toussaint, Zhiyuan Yao ; Clemens Kunst, Alexandre Poirrier, Guillaume Solignac. En-
fin, tout ceci n’aurait pas pu avoir lieu sans l’aide inestimable de Carole Reynaud, qui a su déjouer
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qui t’est éloigné, de m’avoir soutenu quand ça n’allait pas, et d’avoir partagé de beaux moments
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Chapter 1

Introduction

The development of virtualization, where computers are emulated and/or sharing an isolated
portion of the hardware by way of Virtual Machines (VMs) [1], or run as isolated entities (con-
tainers [2]) within the same operating system kernel, has accelerated the development of microser-
vices [3] and led to the commoditization of compute resources1. Thus, data centers are becoming
“miniature” Internets, running on top of specialized network architectures, and possibly relying
on overlay technologies to provide transparent services to the hosted applications [4]. Given this,
architecting network paradigms suited for data center environments is a complex challenge, both
from (i) an operational [5] and (ii) an energy consumption perspective [6] – due to (i) the com-
plexity of orchestration and the richness of available architectures, and (ii) the need to minimize
power consumption while maintaining quality of service.

In this context, the question explored in this thesis is whether, and how, it is possible to provide
certain generic data-center primitives (task migration, reliable content distribution, load balanc-
ing, auto-scaling) as network services, thereby allowing for optimizing resources while incurring
low operational complexity. This is accomplished by studying how certain standardized network
frameworks [7, 8] can be extended to express those primitives directly at the network layer, while
operating transparently to the applications.

The remainder of this introductory chapter is structured as follows. Section 1.1 introduces and
reviews traditional data center architectures, from network protocols through topologies, and to
management frameworks. Then, section 1.2 introduces two network paradigms, Segment Rout-
ing [7] and Bit-Indexed Explicit Replication [8], which enrich network layers by allowing sources
to include further expressiveness in emitted packets, than solely source and destinations. Finally,
section 1.3 argues for the usage of these new paradigms to augment data center architectures, by
providing network protocols that are transparent to the applications, while naturally providing
(i) task mobility, (ii) reliable content distribution, and (iii) load-balancing and autoscaling. The
chapter is concluded by section 1.4, which provides generic assumptions, definitions and notations
that will be used throughout this thesis.

1.1 Background

This section introduces background on data centers: section 1.1.1 introduces traditional network
protocols used in the Internet and in data centers, and section 1.1.2 reviews data center topologies
and architectures.

1.1.1 Network Protocols

Network protocols underlying the Internet are traditionally presented as belonging to several
layers. Each of these layers (layer n) provides service to the layer above (layer n+1) and uses
service from the layer below (layer n−1), and can transmit messages to and receive messages
from those adjacent layers, making network processing effectively separated between independent

1According to a 2018 report (https://www.gartner.com/newsroom/id/3871416), the public cloud market revenue
grew from $154 billion in 2017 to $186 billion in 2018. According to a 2018 survey of 997 IT professionals (https:
//www.rightscale.com/lp/2018-state-of-the-cloud-report), 96% of respondents use private or public clouds.

3

https://www.gartner.com/newsroom/id/3871416
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submodules. For instance, the “Open Systems Interconnection (OSI) model” [9] introduces seven
layers – specifically the (i) physical, (ii) data link, (iii) network, (iv) transport, (v) session, (vi)
presentation and (vii) application layers. More simply, the usual Internet model comprises four
layers [10], and this will be the model used throughout this manuscript:

1. The data-link layer (henceforth, Layer-2), whose purpose is both to (i) modulate to and
demodulate messages from a physical medium (wired or wireless), and to (ii) control access to
that medium, notably by taking care of modulation selection, transmission timing, collisions,
retransmissions, and possibly authentication and encryption. Nodes on a single data-link are
able to communicate with each other, be they or not connected to an outer network.

2. The network layer (henceforth, Layer-3), whose purpose is to carry messages across multiple
networks inter-connected by way of routers.

3. The transport layer (henceforth, Layer-4), whose purpose is to create logical channels be-
tween two distant hosts and transmit messages across those, possibly handling acknowledge-
ment of data transmission, retransmissions, reordering, flow control and congestion control.

4. The application layer (henceforth, Layer-7), which allows one-to-one or one-to-many appli-
cations running on different endpoints to communicate according to an application-tailored
protocol, by transparently using the layers below.

Several protocols exist to provide the functions of each of these layers. As a typical protocol
stack for traditional (and, to a certain extent, legacy) data center networks, Ethernet [11] is used
as Layer-2 protocol, typically to connect physical machines belonging to a single rack2. On top of
this, the Internet Protocol (IP) [13,14] is used as Layer-3 protocol, enabling end-to-end connections
of hosts within the data center, and allowing interconnection to the Internet. In addition, routing
protocols are usually run to build the tables of the routers connecting the different nodes of the data
centers. For instance, the Border Gateway Protocol (BGP) [15], initially designed to enable routing
between the different Autonomous Systems comprising the Internet, is one the possible routing
protocols for data center environments [16]. Then, the Transmission Control Protocol (TCP) [17]
is usually used as Layer-4 protocol, allowing for reliable, ordered transmission of streams of data.
Finally, one example of a Layer-7 protocol running on top of the data-center stack is the HyperText
Transfer Protocol (HTTP) [18] (or its secure version, HTTPS [19]). Initially designed for transfer
of files for web browsing, the emergence of REpresentational State Transfer (REST) APIs [20]
makes HTTP also used as a data manipulation and retrieval protocol.

Although the above-mentioned protocol stack has been widely used across the Internet and in
data center premises, it was designed for an “idealized” network, with the end-to-end principle [21]
in mind. According to this principle, network functions (reachability, encryption, reliability, etc.)
should, when possible, be fulfilled by the communicating endpoints of a logical transmission. In
such an idealized network, each host is equally reachable and can equally perform “client” or
“server” functions. However, this principle may not always be true, for multiple reasons. First,
IPv4 address exhaustion3 makes the use of private addressing schemes and of Network Address
Translation (NAT) devices to translate addresses at the ingress and egress of these private networks
prevalent. Second, the progressive shift to a consumer-producer paradigm [22], where end users
often want to retrieve content, and data center facilities are often used to serve content, imposes
an asymmetry between two types of hosts. Third, data centers (and especially public clouds) are
often configured to run multi-tenancy scenarios [23], wherein multiple virtual sub-facilities – each
intended to belong to one tenant4 – are sharing the same physical resources (physical machines
and physical network).

For these reasons, data center networks usually rely on abstractions to provide multiple virtual
flat networks, hiding the complexity of their physical network architecture to provide a consistent
and isolated network to each of the multiple tenants [4]. Each tenant runs a set of VMs and is,
for example, presented with a virtual Layer-2 network so that, in a way, the end-to-end principle
is restored within this network. According to [4], the simplest way to implement these virtual

2Although only wired data centers will be studied in this thesis, wireless data center architectures are an active
research area [12].

3https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
4For the purpose of this section, a tenant is defined as any entity using some of the resources of a data center

for a single purpose, be it an individual, a company, or a logical entity such as a project to which resources are
assigned, etc.

https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
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Figure 1.1 – Virtual router operation

networks in data center environments is by using Virtual Local Area Networks (VLANs) [24]: each
Ethernet packet carries a 12-bit VLAN identifier, and switches forward packets only between those
physical ports which are configured to belong to the same VLAN. However, due to the restricted
corresponding identifier space (only allowing for 212 = 4096 tenants), and the necessity for tenant
networks to be included in a single physical Layer-2 network, other protocols have been developed
that allow for more flexibility – at the cost of operational complexity. Among those, Virtual eX-
tensible Local Area Networks (VXLANs) [25] allow for virtual Layer-2 network to span arbitrary
topologies, by encapsulating Layer-2 frames within a UDP/IP packet containing a special header
enabling a network to be divided among up to 224 ≈ 16.8 · 106 tenants. With VXLAN encapsula-
tion, packets can be transmitted within one data center (or across several data centers) by using
the underlying routing infrastructure. Another protocol which can be used for data center multi-
tenancy is Network Virtualization using Generic Routing Encapsulation (NVGRE) [26], which
encapsulates Layer-2 frames within GRE packets, and also allows for up to 224 tenants. Finally,
inter-data-center multi-tenancy can be achieved by way of Virtual Private Network (VPN) proto-
cols such as Virtual Private LAN Service (VPLS) [27] or Ethernet VPN (EVPN) [28]. With these
protocols, Layer-2 frames belonging to a single tenant are transmitted across a Multi-Protocol La-
bel Switching (MPLS) [29] capable network shared between two data center premises, using MPLS
labels to distinguish between tenants.

Along with the virtualization of compute resources, network resources are also often virtualized
in order to provide the encapsulation services mentioned above. Virtual routers, such as Open
VSwitch (OVS) [30] or the Vector Packet Processor (VPP) [31], are usually run as services in each
physical machine, with virtual interfaces connected to each of the containers and/or VMs (possibly
belonging to several tenants) hosted in that machine, and with physical interfaces connected to
the physical infrastructure of the data center, as depicted in figure 1.1. These virtual routers then
properly encapsulate or decapsulate traffic from and to the instances of the tenants, often using
kernel-bypass techniques (e.g., DPDK [32]) to provide high-performance packet processing. Other
than connecting instances, such virtual routers can also be deployed (usually as virtual machines
themselves) for more specific purposes, e.g., firewalling, intrusion detection, address translation,
encryption, load-balancing, etc., thus providing Network Function Virtualization (NFV) [33].

As has been described above, these layers of virtualization and encapsulation allow to hide the
complexity of the network infrastructure to tenants so that, within each sub-network, the end-
to-end principle can apply. However, this comes at the cost of operational complexity, as virtual
routers must be deployed, and as the corresponding network configuration (identifier assignments,
etc.) must be computed and distributed.

1.1.2 Data Center Architectures

According to [5, 6, 35], one of the first data center architectures to have been used is the
three-tiered architecture described in [34] (figure 1.2). With this architecture, which is essentially a
(potentially multi-rooted) tree, machines are grouped into racks connected to a Top-of-Rack (ToR)
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Figure 1.2 – Three-tiered data center network topology [34]

Figure 1.3 – Fat-tree data center network topology [35] with k = 4

router5. Each of these ToR routers is itself connected to one among several aggregation routers –
thus each aggregation router is the root of a subtree comprising several racks. Finally, aggregation
routers are meshed to one or several core router(s), usually through links of higher capacity, thus
allowing a host in any rack to reach any other host by crossing 1, 3 or 5 routers. These core routers
can be connected to an egress router, which acts at the gateway of the data center. A drawback
of this topology, as identified in [35], is that the links between core and aggregation routers act
as bottlenecks, thus limiting the throughput achievable between two arbitrary hosts when many
hosts communicate with other non-local hosts. Overcoming this limitations require increasing the
number of high-throughput routers, and therefore incurs an often prohibitive hardware cost.

To address these drawbacks, an important amount of work has consisted of deriving topologies
for data centers that are efficient in terms of throughput while minimizing hardware cost and
environmental impact [5,6]. In [35], a data center architecture is presented, which aims at reducing
the hardware cost of a throughput-efficient6 network, compared to three-tiered data centers. This
is achieved by using a fat-tree topology [38] (figure 1.3): with k being an even integer, k core routers
are each connected to one router in each of k pods. Each of the k pods comprises two layers of k/2
routers: the upper (aggregation) layer is connected with the core layer, and the lower (ToR) layer
is connected to hosts. Within a pod, the aggregation layer is meshed with the ToR layer. Finally,
each ToR router is connected to k/2 hosts. This allows connecting k3/4 hosts with k(k+1) routers
while achieving maximum bissection bandwidth. However, the proposed architecture comes at an
operational cost, as it imposes a custom addressing scheme, along with a hardware modification
of the routing lookup mechanism to allow for prefix- and suffix-based routing. Furthermore, it
requires a custom centralized flow scheduler in order to achieve full throughput.

VL2 [39] is another proposed hierarchical data center architecture, which uses a Clos topol-
ogy [40] and provides separation of identifiers and locators through two separate address spaces
and IP-in-IP encapsulation, while presenting a Layer-2 semantic to the whole overlay network. A
centralized directory maintains a mapping between applications identifiers and locators of their
ToR routers, and a shim layer running in each machine provides encapsulation services, while
decapsulation is performed at the ToR routers. Source routing is used to balance traffic across

5In this section, the word “router” is used to designate devices that can perform Layer-2 and/or Layer-3 for-
warding, indifferently.

6This is assessed by computing the bissection bandwidth. The bissection width of a network is defined as the
minimal width (number) of links that need to be cut so as to separate the network into two equal parts. The
bissection bandwidth then corresponds to the total throughput that these cut links can sustain.
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(a) DCell [36] with n = 3 and ℓ = 1 (b) BCube [37] with n = 4 and ℓ = 1

Figure 1.4 – Advanced data center network toplogies

core routers randomly. With this architecture, routing tables within routers are only bound to the
physical topology (making them lightweight and rarely changing), while applications can be freely
dynamically allocated on top of this underlay architecture.

Although the architectures in [35, 39] possess good properties in terms of cost and achievable
throughput, they remain hierarchically organized in three layers, which can pose scalability issues
for very large data centers – for instance with [35], core routers need to have O(n1/3) ports to
build an n-machine data center. To address these scalability issues, recursive architectures have
been introduced. Among those, DCell [36] is an architecture using routers with a fixed number of
ports. Starting from a small building block of level 0 (a rack of n machines connected to an n-ports
router), blocks of level ℓ+1 are built by connecting sℓ+1 blocks of level ℓ, where sℓ is the number
of machines in a block of level ℓ, as depicted in figure 1.4a. This is achieved by realizing a full mesh
between sub-blocks: two sub-blocks are connected by picking one machine into each of them, and
connecting them to each other. Therefore, machines become parts of the routing infrastructure,
with routers only providing rack connectivity. Thus, DCell uses a custom Layer-3 protocol, with
a custom forwarding module in the physical machines: this has an operational cost and incurs
additional resource (CPU) consumption. Another recursive topology is BCube [37], whose main
difference to [36] is that it uses routers not only at the rack level, and provides multiple parallel
paths between pairs of machines. With a building block (of level 0) consisting of n machines
connected to an n-ports router, a block of level ℓ + 1 is built by connecting n blocks of level ℓ
together, using nℓ+1 routers, as depicted in figure 1.4b. Similarly to [36], machines are part of
the forwarding infrastructure, and a custom source routing protocol is used to select a server-path
between two nodes, with a custom module deployed in each machine.

Another research aspect related to data center architectures is that of traffic management. In-
deed, it has been shown that data center traffic is bursty [41] – for instance, one of the data center
studied in [41] exhibits a median flow inter-arrival time lower than 250 µs. Given this, architectures
have been designed to properly balance traffic among data center links while handling asymmetry
and reacting to congestion. For example, Hedera [42] is a centralized architecture which aims at
properly balance flows in order to provide near-optimal bissection bandwidth. It consists of a cen-
tralized scheduler, which periodically probes ToR routers and extracts characteristics of the larger
flows. From this, it estimates the throughput demand of each flow (i.e., the throughput that the
flow would be achieving if it was only limited by the interfaces of the sender and receiver), and
uses simulate annealing to compute an almost-optimal placement of flows to satisfy these demands.
Finally, corresponding rules are pushed to the routers using a Software Defined Network (SDN)
controller [43]. Similarly, inter-data-center centralized traffic management architectures have been
proposed [44,45]. Another data-center traffic management framework is Conga [46], which acts at
the “flowlet” level rather than making per-flow decisions. Flowlets are defined as bursts of packets
sufficiently spaced in time so that they can be sent over different paths without causing packet
reodering. With Conga, each intermediate router marks congestion information within a special
VXLAN header, before reflecting this to the ToR router from which traffic originates. Each ToR
router maintains a per-ToR-router congestion table, and makes traffic placement decisions accord-
ingly. While providing reactive traffic balancing and global congestion knowledge, this architecture
requires hardware modifications in the routers (to be able to mark congestion).
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Figure 1.5 – IPv6 Segment Routing Header [47]

Algorithm 1 SR Header Processing at a given Segment Endpoint

p← packet
S ← address of this segment
if p.dst = S and p.nextHeader = 43 and p.routingType = 4 then

if p.segmentsLeft > 0 then

apply the function of this segment to p
p.segmentsLeft← p.segmentsLeft− 1
p.dst← p.segmentsList[p.segmentsLeft]
p.ttl← p.ttl − 1
transmit p over interface for p.dst

else

drop the packet
end if

else ⊲ non-SR packet or packet destined to another router

process packet normally
end if

As described in sections 1.1.1 and 1.1.2, data center architectures have evolved to address
scalability issues in terms of topology and traffic management. On the one hand, these evolutions
often rely on complex overlays, specific routing schemes, and/or custom network protocol stacks.
On the other hand, some protocols have been proposed in order to simplify network operation,
by encoding instructions directly in the packets rather than provisioning ad-hoc rules in advance.
Section 1.2 describes two such network architectures, and in section 1.3 will describe if and how
they can be useful to solve data-center-specific issues.

1.2 Extending the Network Layer

This section introduces two network paradigms, Segment Routing (section 1.2.1) and Bit-
Indexed Explicit Replication (section 1.2.2), which will be used throughout this thesis as founda-
tional blocks to provide augmented data center services. A common point to these two architectures
is that they rely on source-provided instructions embedded in a given network packet to influence
the behavior of further devices (e.g., routers or hosts) that will process and/or forward that packet.

1.2.1 Segment Routing (SR)

Segment Routing (SR) [7] is a network architecture enabling source-routing capabilities in a
controlled domain, and standardized by the Internet Engineering Task Force (IETF7) [48]. SR
is an architecture, for which there exists two data-plane instantiations or “flavors”: (i) an MPLS
flavor, where segments are encoded by way of MPLS labels [49], and (ii) an IPv6 flavor [47], where

7https://www.ietf.org

https://www.ietf.org
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segments are encoded by way of IPv6 addresses. For the purpose of this manuscript, only the
IPv6 flavour (IPv6 Segment Routing or SRv6) will be considered.

SRv6 allows a given packet to be forwarded along a set of “segments” encoded in the packet
header, each of these segments being represented by an IPv6 address, and representing a specific
function to be executed on the packet. This is done using an IPv6 extension header, defined in [47]
and depicted in figure 1.5. This header carries a list of segments, which the packet should traverse,
with the last segment representing the ultimate destination address of the packet. Each segment
is divided into a locator part (typically, the first 64 bits), and a function part (typically, the last
64 bits). The locator is a routable IPv6 prefix, meaning that the packet will be naturally directed to
the next segment using the underlying routing infrastructure (possibly taking advantage of ECMP
multipath routes), and that the packet can therefore naturally traverse non-SR-capable routers.

An SRv6 header is initialized with a list of segments (in reverse traversal order), with the last
segment being the original destination address of the packet. Fields LastEntry and SegmentsLeft

are initialized to the number of segments n, and the destination address of the packet rewritten
to that of the segment at position n – i.e., the first segment in traversal order. As described in
algorithm 1, upon receiving a packet, a simple SR endpoint will process the packet according to the
function instructed in the segment identifier and, if applicable, will initiate forwarding the packet
to the next segment. This is done by replacing the destination address of the packet by that of
the next segment, and by decreasing the SegmentsLeft counter. Of course, if complex behavior
is applied by the segment endpoint to the packet (e.g., adding a new header), the simple process
described in algorithm 1 needs to be adapted accordingly – for instance, if inserting a new header,
lines 6→ 8 of algorithm 1 might not be necessary.

Some example functions that can be instantiated by segments are defined in [50]. The simplest
one is the “endpoint” function, denoted END, which essentially is a no-op and consists of simply
forwarding the packet to the next segment. By simply using a sequence of END segments, source
routing results, that is, a packet follows a source-specified path. Source routing was already defined
as a component of IPv6 in its original specification [51] (later superseded by [14]), but was later
deprecated for security reasons [52]. Indeed, unrestricted IPv6 source routing could lead to, among
others, traffic amplification attacks and network topology exposures [53].

To avoid reproducing these issues, Segment Routing introduces the concept of SR domain, i.e.,
a consistent and autonomous set of nodes controlled by the same administrative entity (e.g., a data
center or an ISP network). Within a single domain, it is assumed that all nodes are trusted, in
which case packets embedding an SRv6 header can be directly issued and received by hosts. For
packets traversing a domain, SR defines the concept of ingress node. Upon entering an SR domain
by reaching the ingress node, and depending on characteristics of the packets (source address,
destination address, etc.), a packet will have an SRv6 header applied to it, containing a suitable
segment list. The SRv6 header can either be inserted within the packet (“insert mode”), or a new
outer IPv6 header can be prepended to the packet (“encap mode”), leaving the original packet
intact. Upon reaching the last segment, the SRv6 header can be removed, so that it does not
appear in the resulting packet, and so that the packet egresses the domain with its original form.
As argued in [47, section 6], this does not have the security drawbacks of the original IPv6 source
routing, provided that packets entering the domain and already containing segments pointing to
inside the domain are discarded. In cases where SR packets are to traverse multiple domains,
security can be achieved by the use of a Hash-based Message Authentication Code (HMAC), as
described in [47, section 6.3.2].

Beyond the “endpoint” function, other modular functions are defined in [50]. For instances,
some functions allow for forwarding the packet according to non-default semantics – END.X allows
forwarding along a specified interface, and END.T forwarding according to a lookup in a specific
table. Other functions (END.DX2, END.DX2V, END.DT2U, END.DX, END.DT) allow decapsulating the
SRv6 header and forwarding the resulting according to different lookup strategies (e.g., along a
specified interface or according to a lookup in a specified table). Finally, some functions (END.B6,
END.BM) allow insertion of new SR headers to a packet. The variety of these functions indicates
how SR can be used for more complex applications than sole source routing.

Notational Note

The SRv6 header format as specified in [47] and depicted in figure 1.5 contains segments in
reverse traversal order: the first segment encoded in the header is the last traversed, the second
encoded is the second-to-last traversed, etc. For ease of readability, however, throughout this
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manuscript the inverse convention will be adopted. An SR list (s1, s2, . . . , sn) will thus denote a
segment list whose ith segment to be traversed is si.

Related Work

SR has been used for different purposes, the first of which is traffic engineering. In [54],
traffic engineering goals (e.g., “the load on all links should not exceed 90% of their capacity) are
considered and expressed in an almost natural (Scala-based) language. An algorithm is introduced
to turn these requirements into a set of SR lists instantiating paths between endpoints. In [55],
a model of traffic engineering aiming at minimizing link utilization by directing flows through SR
lists of length 2 is formulated, and offline and online resolution algorithms are proposed. In [56],
SR is used for sub-second traffic engineering. That is, links are continuously monitored, and when
congestion (rather than link failure in traditional traffic engineering) is detected, new SR paths
are computed to limit link usage. In [57], an incremental deployment of SR within an ISP is
considered, and an algorithm to minimize link utilization in a hybrid SR/IP network where the
size of the SR domain gradually increases is proposed. Finally, in [58], an approach is proposed
to provide traffic engineering within enterprise networks. A custom DNS resolver receives DNS
queries augmented with traffic requirements, computes a suitable path and communicates it to the
access router, before replying to the client with a corresponding “path ID”. The client embeds this
path ID as an END.B6 segment in outgoing packets; upon reaching the access router, this segment
triggers insertion of the previously-provisioned path as a new SRv6 header.

Another interesting use case for SR is service function chaining. As introduced in [59], it consists
of specifying a list of Virtual Network Functions (VNFs) that should be applied to a packet as a set
of SR segments. In [60], a Linux kernel module is presented, which allows forwarding SR packets
belonging to a service chain, to VMs running SR-unaware VNFs. This is done by decapsulating
and re-encapsulating packets, so that VNFs only are exposed to non-SR packets. In [61], an SR-
aware VNF is presented, which allows native firewalling of SRv6 packets belonging to a service
chain, by way of an extension of the Linux firewall iptables. In [62], the SRv6 service chaining
abstraction is extended from packets to bytestreams. This is achieved by using a transparent proxy
that terminates TCP connections and opens a new TCP stream between each pair of successive
segments in the chain.

SR has other use cases which go beyond traffic engineering and service chaining. In [63], SR
is used for network monitoring, by sending probe packets along a cycle of nodes, thus providing
a synchronization-free method to detect link failures. Traffic duplication [64] is another use case,
where SR is used to send TCP traffic across two parallel paths. When there is spurious packet
loss or latency along one of the paths, this helps reducing the flow completion time, while only
marginally increasing it when the paths are identical and non-faulty.

Finally, it is noteworthy that in addition to being under standardization at the IETF, SRv6
benefits from an open source implementation in the Linux kernel [65] for both endpoints and routing
stacks. This makes SRv6 an open and promising framework for innovative network applications.

1.2.2 Bit-Indexed Explicit Replication (BIER)

Bit-Indexed Explicit Replication (BIER) is a multicast architecture, where packets are sent
to a source-specified set of destinations, and standardized by the IETF [8]. Traditional multicast
protocols (e.g., Protocol Independent Multicast, PIM [66]) rely on a client-based subscription
model: a multicast group address is pre-provisioned, and clients wishing to be part of the group
send “join” messages containing that address to their local router. Upon receiving such a message
and before forwarding it to the next router leading to the source, routers record state regarding
which interfaces lead to a client that has subscribed to the group (therefore collectively building a
spanning tree). When receiving packets from the source addressed to the multicast address, routers
know on which interface they should be duplicated to reach all destinations. This requirement of
per-flow state in the routers as well as the complexity of group management have hindered the
deployment of multicast in the Internet [67].

BIER, on the other hand, alleviates this complexity by removing the need for per-flow state
in intermediate routers. Rather, it lets multicast packets themselves carry information about the
destinations that they need to be carried over to. While in traditional multicast protocols, routers
solely duplicate packets to the correct interfaces, with BIER they also actively modify packets so
as to update, in-path, this set of destinations. Similarly to SR, the set of destinations for a packet
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Figure 1.6 – Example of BIER bitstring processing

Algorithm 2 Bitstring Processing at BIER Router

p← incoming packet
B ← p.bitstring
I ← ∅ ⊲ set of outgoing interfaces for this packet

D ← [∅, . . . , ∅] ⊲ map from outgoing interface to bitstring

for each b ∈ B do

i← interface leading to b (unicast FIB lookup)
I ← I ∪ {i}
D[i]← D[i] ∪ {b}

end for

for each i ∈ I do

p′ ← p.copy()
p′.bitstring ← D[i]
send p′ over interface i

end for

is specified by the source. Alternatively, and also similarly to SR, this set can be specified by the
first BIER router traversed by the packet, if BIER is to be provided within a domain to which the
source does not belong.

The key component to allow such capability lies in agreeing (in advance, and out-of-band) upon
a mapping between each node (identified by its IP address) and an integer index. The second key
component is the embedding, within each packet, of a bitstring representing the set of destinations
for that packet. More precisely, bit i in the bitstring of a packet is set if and only if node i is part
of the set of destinations for that packet. Upon sending a packet, a source will embed a bitstring
with the set of destinations for that packet, therefore solely taking care of group management.
Whereas with PIM, group management happens in-band (with “join” messages) and involves the
routers recording state, group management with BIER is thus completely out-of-band.

BIER requires that, as an invariant, the bitstring always contains the current destination set for
a given packet. That is, a packet starts with a bitstring containing the whole intended set for the
packet, and upon reaching a destination only contains the bit corresponding to that destination.
To achieve this, BIER routers use a simple mechanism, described in algorithm 2 and illustrated in
figure 1.6. For each destination contained in a given bitstring, unicast routing tables are used to
determine which interface can be used to reach (via the shortest path) that destination. Then, the
packet is replicated to each of those interfaces leading to at least one destination. While sending
the packet over a given interface, its bitstring is updated so that it contains only those destinations
reachable via that interface.

In order to optimize the implementation, it is possible to build a special table containing
a mapping between interfaces and bit-masks of destinations reachable via this interface. Then,
an incoming bitstring is simply AND’d with each of these bit-masks to determine the outgoing
bitstring that should be sent over the corresponding interface – when this results in an empty
bitstring, the packet is not forwarded over that interface.

It is important to note that the way in which node IP addresses are mapped to BIER identifiers
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is not algorithmically significant, as long as the mapping is globally distributed and agreed upon
between nodes. An interesting way of enforcing a mapping without having to distribute it is,
for example, to use IPv6 destinations addresses in which one pre-defined byte carries the BIER
identifier.

Similarly, the way the bitstring is encoded in packets does not influence the functioning of the
protocol. Notably, the IETF has defined two simple encapsulation mechanisms [68]: (i) an MPLS
header and (ii) a UDP header. The UDP header is arguably more flexible, as it allows BIER
packets to be carried over the Internet seamlessly, by establishing a point-to-point tunnel between
two successive BIER routers. In addition, a proposal has been made to carry the bitstring within
an IPv6 extension header [69]. Finally, an interesting proposal [70] consists of encoding bitstrings
directly within IPv6 addresses. For simplicity, and for consistency with work carried on SR, the
encapsulation mechanism that has been retained throughout this manuscript consists of a custom
IPv6 hop-by-hop extension header carrying the bitstring of BIER packets, with the destination
address being a fixed multicast address.

Related Work

In [71], a proposal to increase the resiliency of multicast distribution with BIER or BIER-TE8

with fast re-route mechanisms is introduced. This is achieved by the encoding of an additional
backup path in the BIER-TE header, and of a reset bitmask to be applied after taking the backup
path in order to avoid duplicate packets. A similar mechanism is introduced in [72], where alterna-
tive paths are explored with BIER when links fail. In [73], an SDN controller is implemented and
evaluated, which can configure an OVS BIER router through the OpenFlow protocol. Compared
to a standard SDN multicast solution, this approach only requires configuring the ingress router of
the BIER domain, by mapping destination multicast addresses to BIER bitstrings. The use of this
implementation over an optical network testbed is demonstrated in [74]. In [75], use of BIER-TE
over a time-slotted low-power wireless network is demonstrated. Inspection of the bitstring at the
egress node facilitates monitoring transmission failures. Finally, a data-plane implementation of
BIER in P4 for programmable hardware is presented in [76], underlining the simplicity of packet
processing allowed by BIER.

1.3 Thesis Statement: Augmenting Data Centers through
the Network Layer

Section 1.1 has illustrated that data center architectures rely on complex architectures in order
to address scalability issues. Notably, section 1.1.1 has demonstrated how complex tunneling
architectures are often used as a resort to provide tenant isolation. Similarly, section 1.1.2 has
shown that deployed data center topologies are often complex, with a need for custom addressing
mechanisms and/or routing protocols, with machines sometimes involved in the routing plane.
Then, section 1.2 has introduced two network architectures (SR and BIER) which add flexibility
to the Layer-3. A shared property of these two architectures is that they provide source-routing-
inspired services, wherein paths to be followed by, set of destinations to be reached by, or set of
instructions to be applied on a packet are instructed by the source of that packet – or, by the first
node of an administrative domain.

Another property shared by both network architectures introduced in section 1.2 is that they
can be implemented on top of IPv6 by using extension headers. The flexibility provided by those
architectures, as well as the simplicity of running them atop an IPv6 network, make them in-
teresting candidates for augmenting data centers (i.e., providing services at the network layer)
while providing a simpler architectural model (i.e., avoiding complex overlays by using only a flat
addressing space).

In itself, IPv6 possesses properties making it a good candidate for providing a large-scale data
center infrastructure.

• First, and most obviously, the large addressing space provided by IPv6 (with 2128 addresses
as compared to 232 addresses with IPv4) is necessary to host large-scale data centers. For
instance, a data center using public IPv4 addressing with a /16 IPv4 prefix could only host
216 = 65536 virtual machines.

8BIER-Traffic Engineering, encoding not destinations but link adjacencies to be traversed by a packet.
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Figure 1.7 – Example of shim-layer running in a virtual router. In that example, workloads are containers,
and a shared memory (shm) is used so that the shim layer can transparently retrieve state from the
application (as in part IV).

• Second, this large addressing space can be leveraged to provide a flat architectural model,
without complex overlays. By using the principle of locator-identifier separation [77], it is
indeed possible to provision only a physical addressing scheme, where the routing infrastruc-
ture only takes care of the reachability of physical machines. On top of that, tasks (VMs,
containers, etc.) are assigned virtual identifiers, decoupled of their physical location. Note
that such a similar architecture running atop IPv4, VL2 [39], had been discussed discussed
in section 1.1.2. With IPv6, a possible instantiation of this principle is Identifer-Locator
Addressing (ILA) [78]. ILA consists of splitting the IPv6 space into two parts, and using the
64 low-order bits of addresses as identifiers, with the 64 low-order bits of addresses as loca-
tors. Naturally, the routing infrastructure will use longest-prefix-match routing and therefore
route packets to the machine corresponding to the locator. However, applications only com-
municate with a common pseudo-locator, which is then translated by a shim layer to the
real locator hosting the identifier. This way, tasks can be migrated without the applications
noticing.

Those two reasons argue in favor of using IPv6 data centers. Nonetheless, I argue that it is only
with the help of in-Layer-3 services, that one can make the case for flexible and efficient IPv6 data
centers. This can be achieved by enriching the Layer-3 (through e.g., SR or BIER), adding custom
behavior in the network stack by transparently connecting it to the applications, while letting these
applications only treat native IPv6 packets.

To achieve such a transparent connection between the network stack and the applications,
some assumptions must be made. Notably, as in [39], machines are assumed to be assigned fixed
(“physical”) addresses, with the routing infrastructure of the data center able to provide connec-
tivity between all machines. Only upon topology changes (adding or removing of machines and/or
routers) will the routing infrastructure be updated by the routing protocol running in the data
center. Then, each machine hosts several VMs/containers, and a virtual router dispatches pack-
ets between the physical interfaces of the machine and the virtual interfaces bound to the hosted
VMs/containers. Then, transparently connecting the Layer-3 stack to the applications is done by
way of a shim layer running in that virtual router (figure 1.7), which will be able to pre-process
packets before handling them to the application (or post-process packets after receiving them from
the application). For certain scenarios, a crucial property of this shim layer is that, running in a
privileged virtual router, it can inspect the state of the applications, without interacting with them.
This way, unmodified application can benefit from additional services, transparently provided by
the network layer.

Examples of pre-processing operations which can be performed within such a shim layer, and
which are explored throughout this manuscript, are:

• inspecting whether a VM has completed migration, and deciding accordingly whether to
forward locally or remotely – allowing transparent VM migration (part II);
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• detecting whether a multicast packet is received out-of-order, and if so requesting suitable
retransmissions, before forwarding packets in-order to the application – enabling reliable
multicast (part III);

• detecting whether a host has a cached copy of a multicast packet and can perform a retrans-
mission of it, or whether the retransmission request should be forwarded further – enabling
peer-based multicast recoveries (part III);

• inspecting whether an application is “available” to serve a query, before forwarding the
corresponding packet to that application or rather forward it to another one – enabling
load-aware load-balancing (part IV);

• inspecting whether an application has Layer-4 state for a connection, and deciding whether
to forward packet to that applications or rather to another one – enabling load-balancing
consistency (part IV);

• inspecting whether an application is overloaded, and if so, requesting that another instance
is launched – enabling monitor-less autoscaling (part IV).

In sum, such an augmented Layer-3 allows offering task mobility (part II), reliable multicast
(part III), and load-balancing with autoscaling (part IV) as a network service, while using unmod-
ified applications. As will be studied throughout this manuscript, this has benefits in terms of
network traffic overhead, optimization of resource utilization, quality and fairness of service, and
energy reduction.

1.4 Definitions and Working Assumptions

This section briefly introduces the working assumptions that will be used throughout this
manuscript, and defines terms and notations which will be used recurrently.

• A router is a hardware device which performs Layer-2 or Layer-3 forwarding between inter-
faces according to manually or automatically configured tables. Note that the term router
will be used to refer to any forwarding device, irrespective of whether it performs Layer-2 or
Layer-3 forwarding (whereas devices capable of Layer-2 forwarding, and by extension devices
capable of both Layer-2 and Layer-3 forwarding, are sometimes referred to as switches in the
literature).

• A machine is a physical computer, running a single operating system and connected to a
network via physical network cards (NICs). It can itself host virtual appliances (VMs or
containers) by way of a hypervisor – and these virtual appliances themselves are connected
to the host via virtual network interfaces. Throughout this manuscript, machines will often
be represented by the letter m. Machines will sometimes be referred to as hosts (due to their
ability to host these virtual appliances).

• An application instance is a piece of software running as a Virtual Machine or a container,
providing a service to consumers that would want to interact with the application. This is
usually achieved by running a server software, e.g., an HTTP server. Application instances
can be replicated for scaling purposes, in which case it is assumed that each of the instances
can provide identical services for a client – it is however necessary to ensure that a single
network flow is always handled by the same application instance. By metonymy with the
software running within them, application instances will occasionally be referred to as servers
throughout this thesis. They will also be referred to as tasks or workloads, when this is
more appropriate as per the context. Throughout this thesis, application instances will be
represented by the letter i (in chapter 4), v (in chapter 3, where v is a mnemonic for VIP),
or s (in part IV, where s is a mnemonic for server).

• A rack is a set of machines, located in a single physical pod, and connected to a Top-of-Rack
(ToR) router.

• A virtual router is a softwarized router running in a physical machine, and whose purpose is
to provide inter-connection between the physical interfaces of the machine, and the virtual
interfaces bound to the application instances hosted by that machine.
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• A data center is defined to be a single entity, containing a set of routers and machines,
and connected to the outside via a border gateway. Within the data center, an (IPv6)
physical addressing plane is used by the machines, i.e., each machine is assigned a Physical
IP address (PIP). Note that such PIPs do not necessarily have to be globally routable. A
routing protocol is assumed to have converged, so that machines can communicate with one
another transparently within the data center. Application instances are addressed by Virtual
IP addresses (VIPs), and the VIPs are advertised by the border gateway of the data center,
to the remainder of the Internet. The border gateway is in charge of routing packets coming
from the outside of the data center and addressed to a VIP, to the correct corresponding
machine(s). To do so, it will encapsulate these packets and route them to the PIP of that
machine. The virtual router running there will then be in charge of decapsulation and
handing over to the correct application instance, and of any extraneous behavior as defined
in this thesis.

With these definitions, it is possible to provide a very simple model of a data center network.
More precisely, let R be the set of routers in the data center and M be the set of physical machines.
Then, the data center network can be modeled as a directed graph G = (V,A), where V = M ∪R
is the set of vertices, and A ⊆ (M ∪ R)2 the set of arcs. Existence of an arc (u, v) ∈ A models
the existence of a physical link between nodes u and v. Such links can exist between two routers,
between a machine and a router, but also between a machine and itself (thereby modeling a
loopback interface).

Then, for each ordered pair of machines (m,m′) ∈ M2, a list Amm′ ∈ 2A represents the path
from m to m′. For example, given the topology depicted in Figure 1.8 with three routers r0, r1, r2
and four machinesm1,m2,m3,m4, the arcs of the graph will be as follows: A = {(m1,m1), (m1, r1),
(r1,m1), (m2,m2), (m2, r1), (r1,m2), (m3,m3), (m3, r2), (r2,m3), (m4,m4), (m4, r2), (r2,m4), (r1, r0),
(r0, r1), (r2, r0), (r0, r2)}. The path from e.g.,m1 tom3 will be Am1m3 = {(m1, r1), (r1, r0), (r0, r2),
(r2,m3)}.

Finally, generic mathematical notation used throughout this thesis is introduced in table 1.1.
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Notation Definition

E2 Cartesian product E × E = {(x, y) : x ∈ E, y ∈ E}
2E Set of parts of E {F : F ⊆ E}
N Set of non-negative integers {0, 1, . . .}
R Set of real numbers

R
+ Set of non-negative real numbers {x ∈ R : x ≥ 0}
C Set of complex numbers {x+ iy : (x, y) ∈ R

2}, i2 = −1
⌊x⌋ Floor function (⌊x⌋ ≤ x < ⌊x⌋+ 1)

⌈x⌉ Ceiling function (⌈x⌉ − 1 < x ≤ ⌈x⌉)
log x Natural logarithm (in base e)

log2 x Logarithm in base 2

P[X] Probability of event X

P[X|Y ] Probability of event X conditioned to Y

E[X]

Expected value (“average”) of random variable X

E[X] =

{∑

x x ·P[X = x] if X is discrete
∫

R
xf(x)dx if X has density f

CDF of X
Cumulative Distribution Function of random variable X

CDFX(x) = P[X ≤ x]

f(x) =x→a o(g(x))
f is dominated by g

f(x) = ε(x)g(x) with limx→a ε(x) = 0

f(x) ∼x→a g(x)
f is equivalent to g
f(x) = (1 + o(1))g(x)

f(x) =x→a O(g(x))
f is bounded above by g

f(x) = ε(x)g(x) with ε(x) ≤M, ∀x ∈ (x− δ, x+ δ),
for some M > 0 and δ > 0

f(x) =x→a Θ(g(x))
f is bounded above and below by g

f(x) = ε(x)g(x) with m ≤ ε(x) ≤M, ∀x ∈ (x− δ, x+ δ),
for some m > 0,M > 0 and δ > 0

Table 1.1 – Generic mathematical notation



Chapter 2

Thesis Contributions

This chapter concludes this introductory part by providing a summary of contributions in
section 2.1 and a list of publications in section 2.2.

2.1 Thesis Summary and Outline

This thesis studies the usage of network-layer protocols to provide task mobility, reliable content
distribution, and load-balancing in data center networks. It comprises 5 parts and 10 chapters,
structured as follows.

Part I provides an introductory discussion. In chapter 1, background on data-center architec-
tures and associated network protocols is introduced. Then, two interesting Layer-3 architectures
are introduced, SRv6 and BIER, which make use of source-routing paradigms in order to extend
the network layer. Finally, a discussion is made about how using such architectures can help aug-
ment data centers by providing scalability primitives directly at the network layer. Chapter 2 then
summarizes how this concept was applied throughout this thesis, to provide task mobility, reliable
content delivery, and load-balancing.

Part II studies task mobility in data centers. In chapter 3 (published in [79]), the use of
SRv6 to provide zero-loss VM migration is introduced. Traditional network protocols for VM
migration rely on completely migrated VMs to signal their new location to a centralized directory,
thus yielding a transient period during which packets destined to such VMs are lost. To alleviate
this, chapter 3 proposes to pre-allocate, with SR, a loose “migration path” consisting of the old
and new physical machines: this way, packets always reach the correct machine, whichever step the
migration process is in. This path is provisioned by the control plane prior to initiating the actual
migration, and until after the migration has completed. This is achieved by introducing two new
SR functions: the first one checks (at the source host) whether the link to the VM is still up and
forwards packets to the VM or to the second segment accordingly; the second one checks (at the
destination host) whether the VM has fully restarted, and locally buffers or forwards packets to the
VM as a result. Implementation and evaluation on a virtual router (VPP) show that it is indeed
possible to migrate VMs without losing packets, thus decreasing latency and flow completion time
for the hosted application.

Having introduced the possibility of task migration as a network service, chapter 4 (published
in [80]) studies how flow-aware workload migration can be achieved, that is, migrating com-
municating task closer to each other so as to optimize network traffic. Traditional data center
management architectures have been introduced that consider inter-task network demands, or
the cost of workload migration, but not both. In chapter 4, a multi-objective optimization pro-
gram is introduced, aiming at maximizing the total inter-task throughput while minimizing the
number of migrated tasks and maximizing the number of newly allocated tasks. A Mixed In-
teger Non-Linear Programming (MILNP) formulation of the problem is introduced to capture
the different constraints and objectives, and is linearized into a Mixed Non-Linear Programming
(MILP) formulation. To compute the set of Pareto-optimal solutions, the ε-constraint method
is used as a baseline. Through simulations, the proposed approach is demonstrated to efficiently
increase the total achievable throughput by migrating some of the communicating tasks close to
one another. Due to the high computational cost of this approach, a heuristic solution method is

17
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proposed, which incrementally computes solutions of increasing migration cost, so as to return an
approximate Pareto front. Simulations show that the proposed heuristic is able to decrease the
computational solving time by up to two orders of magnitude, while providing solutions close to
those which are optimal.

Part III studies reliable content delivery in data centers. In chapter 5 (published in [81]), the
use of BIER to provide efficient reliable multicast is introduced. Traditional reliable multicast
protocols use a Negative-ACKnowledgement (NACK) scheme, whereby lost packets are signaled by
corresponding destinations to the source. Then, the source performs either unicast retransmissions
to each of the failing destinations, or a multicast retransmission to the whole group. In chapter 5, a
NACK-based protocol aiming at minimizing retransmission traffic is proposed, taking advantage of
BIER. Instead of using per-flow bitstrings, different bitstrings are used per-packet : retransmission
traffic for a packet is sent only to the set of those destinations that have missed that packet.
To achieve this, the source collects NACKs emitted by different destinations during a short time
window, so as to construct a suitable retransmission bitstring. The protocol is implemented in a
network simulator (ns3), and packet-level simulations are conducted in different topologies with
different loss patterns. Especially in cases where a subset of the data-center exhibits localized losses,
traffic is shown to be reduced as compared to multicast-based retransmissions (because the whole
tree does not have to be flooded) and to unicast-based retransmissions (because the bottleneck
links do not have to carry multiple copies of retransmitted packets). To complete the analysis, a
mathematical model quantifies the footprint of retransmission traffic for unicast-, multicast-, and
BIER-based retransmission, in arbitrary tree topologies. A first-order approximation when α→ 0
(with α the link loss rate) is derived in theorem 5.1, showing that retransmission traffic scales as
L logL with BIER retransmissions, as compared to L log2 L with unicast retransmissions and L2

with multicast retransmissions (where L is the number of links in the tree), theoretically confirming
those benefits.

In chapter 6 (submitted as [82]), the use of reliable BIER is extended to provide peer-assisted
multicast recoveries. An extension to the BIER data-plane is proposed, which allows destina-
tions to learn about topologically close peers that have subscribed to the same multicast flow. This
is achieved by carrying and updating a peerstring in each packet, containing the set of destinations
reached by the parent node for this packet. Then, upon missing a packet, SR is used by failing des-
tinations to direct retransmission requests (NACKs) through a path comprising (i) one or several
peers and (ii) the source, until finding one peer (or ultimately, the source) able to send a retrans-
mission of the missed packet. Different policies for peer selection are proposed and mathematically
evaluated. First, two simple static policies are analyzed, namely (i) selecting a random peer in a
destination’s subtree and (ii) selecting a designated peer in that subtree. Mathematical analysis
reveals that the second policy generates less retransmission traffic (as retransmissions are sent by
only one peer) but is less likely to succeed (since if that peer has not received the packet, no peer
will be able to obtain a retransmission). Second, a dynamic policy is introduced, wherein each
peer tries to dynamically learn from which peer it is more likely to obtain a retransmission. The
proposed architecture is evaluated through packet-level network simulations, in different topologies
and with different policies. Evaluation shows that it is able to reduce the load on core links (as
compared to chapter 5) by increasing retransmission locality, thus decreasing the overall network
overhead.

Part IV studies load-balancing in data centers. In chapter 7 (published in [83, 84]), the use
of SRv6 for application-aware load-balancing is studied. Usually, load-balancing devices in
data centers are replicated, for resiliency and scalability. In doing so, consistent hashing is used to
ensure that flows are assigned to the same server, whichever load-balancer they go through, and
even in case of reconfiguration of the pool of application instances. However, these approaches
assign queries to application instances regardless of their current load. To handle this, chapter 7
introduces the use of SR to direct the first packet (TCP SYN) of a query through a chain of two
random candidate instances, each one successively deciding whether or not to accept it based on
its local state. This provides a load-aware load-balancing mechanism running within the network
layer, and without monitoring. To avoid unnecessary triangular traffic, further packets are directed
directly towards the instance having accepted the connection. This is achieved by using an in-
band signaling protocol, where custom SR functions are used between the load-balancers and
the servers to install and remove per-flow state. Resiliency is ensured by way of a consistent
hashing algorithm assigning flows to lists (instead of singletons) of instances in a reliable way. A
mathematical model of the client response time of the system for Poisson arrivals and exponential
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service times is derived. Using this model, it is possible to quantify the benefits of the proposed
approach in terms of expected response time, tail response time, server load fairness, and energy
reduction. The analysis shows that, under the reasonable assumption that the network delay is
smaller than the mean service time, the performance is always increased as compared to random
single-choice load-balancing (theorem 7.1). The proposed architecture is implemented as a plugin
for a virtual router (VPP), able to extract information from a standard HTTP server (Apache)
without disruption through a shared memory channel, and using this information to take connection
acceptance decisions. Evaluation on a 48-instance testbed with synthetic and real traffic confirms
these benefits, notably showing that it is possible to provide the same average quality of service
(client response time) by reducing the number of VMs by 17% as compared to single-choice random
load-balancing.

In chapter 8 (published in [85]), the feasibility of implementing a stateless load-aware load-
balancing architecture in hardware is explored. Implementing load-balancing dispatchers in hard-
ware is desirable for efficiency and scalability reasons. However, this is incompatible with main-
tenance of per-flow state, as required by load-aware architectures. To circumvent this, chapter 8
explores the use of covert channels to carry such state within the packet headers. The same mech-
anism is used as in chapter 7 to establish connections – i.e., connection establishment packets
are sent through a chain of candidate instances until one of them accepts to handle the query,
based on its local state. However, instead of installing flow state in the load-balancer, the instance
having accepted the connection communicates its position in the SR header in a covert channel
back to the client. This value is then automatically reflected by the client to the load-balancer,
which can thus use this information to direct the packet to the correct server. Low-order bits of
TCP timestamps are proposed as a covert channel usable by standard, unmodified TCP clients.
In addition, the load-balancer ensures reliability in case of changes in the pool of instances by way
of consistent hashing versioning. That is, packets are sent with an SR header containing instances
that were previously the result of the consistent hashing operation. The feasibility of this archi-
tecture is demonstrated by implementation of a prototype on programmable hardware, using the
P4 language and targetting the NetFPGA-SUME platform. Data-plane per-packet simulations of
that implementation show that the incurred parsing latency is negligible (in the order of 10 µs).
Simulations show that the proposed consistent hashing mechanism improves resiliency by one order
of magnitude as compared to mechanisms that do not use versioning. In sum, this architecture
allows to obtain the same benefits as those introduced in chapter 7, while providing a low-latency
line-rate hardware implementation and increasing consistent hashing resiliency.

Chapter 9 (submitted as [86]) introduces a monitor-less auto-scaling architecture using
SRv6. In order to meet variations in traffic demands while ensuring a predefined level of service,
data centers use auto-scalers to, in real time, adapt the number of replicated instances of a given
service. Auto-scalers rely on centralized architectures to make these decisions, thus incurring a
monitoring overhead. In chapter 9, the use of SRv6 to provide joint monitor-less load-balancing
and auto-scaling is studied. Application instances are ordered into a fixed chain, and new queries
are sent along this chain until one of them accepts to serve the connection, using the data-plane
introduced in chapter 7. In addition, the last instance of the chain monitors its own usage state to
trigger down- or up-scaling of the chain. Indeed, the last instance of the chain receiving too few
queries indicates that the chain is over-provisioned, whereas its receiving too many queries indicates
that the chain must be upscaled. A Markov chain model of the performance of the system is derived,
allowing to express the number of queries held by each server. Using the Recursive Renewal Reward
(RRR) technique, it is possible to derive the corresponding expected client response time, in the
case of small chains, and therefore to deduce the possible energy savings offered by the system
(i.e., the possible reduction in number of servers while achieving a similar service quality as with
random load-balancing). Implementation of the architecture as a VPP plugin, and evaluation with
real traffic traces confirms that these benefits hold in real environments: the same average client
response time can be achieved with lesser VMs as with random load-balancing, while simultaneously
diminishing the tail of the response time distribution.

Finally, part V concludes this manuscript, and a summary in French is provided in appendix A.

2.2 List of Publications

The following publications were published or submitted during the course of this PhD.
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Chapter 3

Zero-Loss Virtual Machine
Migration with IPv6 Segment
Routing

Virtual Machine (VM) live migration [87] is a way to transfer a VM from a machine to another,
by iteratively copying its memory. It is further suggested in [88, 89] that it is possible to perform
live migration of individual processes or containers, thus attaining one further level of granularity
of task placement flexibility. These techniques naturally find applications in the context of data
centers, as these host heterogeneous workloads, whose lifetimes can vary greatly, and which can
exhibit rapidly changing resource demands and inter-application dependencies. With live VM mi-
gration, applications need not be tied to a specific machine – and their relocation can become part
of a “natural” mode of data center operation. In this context, architectures have been developed
in which workload migration is used as a baseline to achieve different goals [90]: energy minimiza-
tion [91], network usage minimization [92], operational cost minimization [93], maintenance [94],
etc. Thus, VM migration not only provides a way to accommodate hardware failures without
service downtime, but more generally may be beneficial to the efficiency of the whole data center.

From a network perspective, a challenge raised by live migration lies in maintaining connec-
tivity to a VM after it has been migrated. Indeed, hypervisors normally assume that VMs are
migrated within a single LAN, using Reverse ARP (RARP) to advertise the new location of a
VM after migration. Traditional techniques to overcome this issue rely on Layer 2 overlays, such
as VXLAN [25] or NVGRE [26]. Other approaches include making use of Mobile IP [95] or of
LISP [77]. The emergence of IPv6 [14] data-centers introduces other opportunities, both for the
addressing of workloads and for re-engineering the data-path. Among the proposed approaches for
mobility within IPv6 data-centers, Identifier-Locator Addressing (ILA) [78] has been proposed at
the IETF, using high-order bytes of addresses to denote locators and low-order bytes of addresses
to denote identifiers.

A drawback of all these approaches is that they incur a period of time, during which packets
addressed to the migrating VMs are lost. This raises concerns for applications that are intolerant
to packet losses (e.g., UDP-based delay-critical applications, virtual network functions, ...).

3.1 Statement of Purpose

The purpose of the chapter is to introduce a VM mobility solution, which provides “zero-loss”
capabilities: assuming that the network is not lossy, any packet destined to a migrating VM will
eventually be received by said VM. To that purpose, the Segment Routing (SR) architecture is
leveraged.

As introduced in section 1.2.1, SR is an architecture which allows packets within a designated
domain to be added an extraneous header, designating an ordered list of segments through which
the packet is expected to go. Segments represent abstract functions to be performed on packets,
and can be as simple as forward to next segment (enabling source routing and traffic engineer-
ing), but can also represent more complicate instructions (from custom encapsulation or routing
behavior to complete virtual network functions). With IPv6 Segment Routing (SRv6), segments
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are represented as IPv6 addresses embedded as a list in an IPv6 extension header [47].
The idea underlying this chapter is to use SRv6 to solve the locator/identifier mapping syn-

chronization problem during VM migration, by letting the gateway (proactively) route packets
destined to a migrating VM through a path comprising the old and the new host machine. This
way, the responsibility of the old host machine is reduced to (i) forwarding packets locally while the
migration is not complete and (ii) forwarding packets to the next segment (the new host machine)
once migration has completed. This way, no packets are lost during the migration, whereas tra-
ditional solutions would require a mapping to be updated once migration has completed, leading
to potential packet losses during this period of time. Furthermore, the overhead on the old host
machine is kept to a minimum, since no tunnel has to be established and no Layer-2 overlay is
required.

3.1.1 Related Work

Numerous solutions have been proposed to address the issue of maintaining Layer-3 network
connectivity during and after VM migration. The simplest involves using a Layer-2 overlay [25,26],
and relying on hypervisors sending gratuitous Reverse ARP messages after migration. In addition
to the operational complexity incurred by such overlays, the VM is not reachable on the new host
machine until the RARP has propagated, leading to potential packet losses.

Another simple solution consists of creating an IP tunnel between the source and the destination
host machines. In [96], the Xen hypervisor is modified so that after migration, packets reaching
the hypervisor at the source host machine are tunnelled towards the new host machine. After
migration, the VM uses two different addresses (an “old” and a “new” address), and Dynamic
DNS is used so that external clients can reach the VM via the new address. The drawback of
this approach is that the hypervisor must co-operate with the destination host machine during an
unpredictable amount of time by performing tunnelling. Furthermore, this is incompatible with
para-virtualized interfaces such as virtio-net [97], where packets destined to VMs are not handled
by the hypervisor.

In [98], Mobile IP is used to assist the migration process. Traffic from/to the VM is routed
through a home agent, which tunnels it to the correct machine hosting the VM. It is the role of the
hypervisor to update the home agent with the new location of the VM once it has migrated. Thus,
after VM migration, packets can wrongfully reach the source host machine before registration of
the new location is complete. This approach is improved in [99], by configuring, before migration,
a dummy secondary interface for the destination network, and swapping primary and secondary
interfaces after migration. This requires co-operation with the VM as two interfaces are used.

In [100], LISP is used to address the issue of Layer-3 connectivity during VM migration. Packets
destined to a VM traverse a LISP router, which encapsulates them towards the current resource
locator of the VM. The hypervisor is modified so that, after VM migration, the mapping system
is updated to reflect the new resource locator of the VM. This avoids triangular routing, but once
again the VM is not reachable during the period of time when the mapping is being updated.

Finally, other approaches orthogonal to the context of this chapter are worth mentioning.
In [101], TCP options are used to facilitate migration of TCP connections. In a Software Defined
Networking (SDN) context, [102] proposes a framework for virtual router migration, in which
control planes and data planes are migrated during two distinct phases.

3.1.2 Chapter Outline

The remainder of this chapter is organized as follows. Section 3.2 introduces the high-level
assumptions and mechanisms used for SR-based migration, before a formal specification is given
in section 3.3. The proposed mechanism is then evaluated on different workloads in section 3.4.
Finally, section 3.5 concludes this chapter.

3.2 SR-based Migration

As described in section 1.4, this chapter assumes that a VM is located within an IPv6 data-
center, and accessible through a virtual IP address (VIP). Each machine within the data-center is
accessible at a physical IP address (PIP), and can host several VMs. Located at the edge of the
data-center, a gateway advertises (e.g., with BGP) the whole virtual address prefix.
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Figure 3.1 – SR VM Migration: migrating VM.

A location database maintains a mapping between each virtual address and the physical address
of the machine hosting the corresponding VM. When receiving traffic for a given VIP, the router
will apply an SR policy consisting of one segment (the PIP of the machine hosting the VM). Each
machine is running a virtual router (in the implementation described in section 3.4, VPP1), which
is connected to the physical interface(s) of the machine, and to each VM via a virtual interface
(in the implementation described in section 3.4, a vhost-user interface2). In sum, under normal
operation (when the VM is running on a single machine), the gateway will tunnel traffic for a VM
towards the machine hosting it.

The mechanism introduced in this chapter assumes that an orchestrator is running in the
data-center, which decides on the allocation of VMs to physical machines. When the orchestrator
decides to move a VM from a host machine to another, it proactively modifies the routing tables
of the gateway, so that the traffic for the corresponding VIP is applied an SR policy consisting of
two segments, corresponding to the old and new machines hosting the VM. This way, when the
VM is migrating, the gateway will direct traffic to the old host machine. As long as the VM has
not completed migration, traffic will be intercepted by the old host machine (figure 3.1); as soon
as migration is complete, the old host machine will simply forward traffic to the next segment
(i.e., the new host machine). This way, no synchronization is required between the host machines
and the networking infrastructure: rather, traffic is loosely sent to a logical path comprising both
machines.

3.3 Detailed Specification

This section introduces a formal description of the SR functions necessary to perform zero-loss
migration, as well as the behavior of the gateway.

3.3.1 Definitions

Forward to Local (fw)

The fw function simply forwards the packet to the next segment. In SR terminology [50], this
corresponding to the END behavior.

Forward to Local if Present (fwp)

The fwp function forwards the packet to the last segment (skipping intermediary segments),
only if the corresponding VIP v is present locally; otherwise it acts as the fw function and forwards
the packet to the next segment. The forwarding decision is made by the virtual router by inspecting
its routing table, and seeing whether the entry for v corresponds to a virtual (local) interface, whose

1https://gerrit.fd.io/r/vpp
2https://github.com/qemu/qemu/blob/master/docs/interop/vhost-user.txt

https://gerrit.fd.io/r/vpp
https://github.com/qemu/qemu/blob/master/docs/interop/vhost-user.txt
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Figure 3.2 – SR Migration: detailed example.

link-status is up. This corresponds to the END.S behavior [50] with a custom policy for forwarding
decisions.

Buffer and Forward to Local (bfw)

The bfw function inspects the last segment v. If v is not present locally (i.e., if the corre-
sponding virtual interface is not ready), it will buffer the packets for further delivery. Otherwise,
it flushes any buffered packet to the virtual interface corresponding to v, and forwards the current
packet to the last segment v. Implementation-wise, packets are buffered in the local memory of
the virtual router, per interface and in order. Such packet buffers must be provisioned with a size
large enough to handle all potential packets coming during the VM downtime phase. If a VM is
expected to receive traffic at rate of r packets/s and to be down during ∆t seconds, buffers must
be provisioned with a size of r ·∆t packets.

3.3.2 Detailed Migration Process

For each VIP v, the controller maintains an entry L(v) in the gateway which is either R(m1)
(“running on m1”) or M(m1,m2) (“migrating from m1 to m2”), depending on the state of v.
Conceptually, this forms a mapping v 7→ L(v), where L(v) is the location of v. Practically, this
is implemented by way of routing adjacencies in the FIB of the gateway. The gateway uses the
transit behavior T.INSERT [50] for v, that is, this routing adjacency triggers insertion of an SR
header on packets destined to v. When the gateway receives a packet for v:

1. If the corresponding entry L(v) is R(m1), then a SR header (m1::fw, v) is inserted;

2. If the corresponding entry L(v) is M(m1,m2), then a SR header (m1::fwp,m2::bfw, v) is
inserted.
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Experiment Variant Downtime Lost/buffered packets

HTTP static Non-SR migration 101 ms 1160

HTTP static SR migration (drop) 107 ms 197

HTTP static SR migration (buffer) 104 ms 216

HTTP dynamic Non-SR migration 100 ms 1100

HTTP dynamic SR migration (drop) 102 ms 190

HTTP dynamic SR migration (buffer) 103 ms 199

iperf Non-SR migration 192 ms 1090

iperf SR migration (drop) 192 ms 859

iperf SR migration (buffer) 185 ms 789

iperf sink Non-SR migration 167 ms 3390

iperf sink SR migration (drop) 163 ms 2810

iperf sink SR migration (buffer) 163 ms 3050

Table 3.1 – Evaluation of SR migration: average VM downtimes and number of lost packets (or buffered
packets for the corresponding mechanism) for the different evaluated workloads and migration mechanisms.

Normal Operation

Under “normal operation”, that is, when a VM v is running on a machine m1, the gateway is
configured to map v to L(v) = R(m1). Thus, packets destined to v are forwarded to m1 by way of
a single-hop SR tunnel.

Migration Operation

Figure 3.2 examplifies the operation that occurs when a VM is migrated. When the controller
decides to move v from m1 to m2, it updates the gateway so as to remap the entry for v to
L(v) = M(m1,m2). It then queries the hypervisors running on m1 and m2 to initiate the live
migration process.

First, the VM is stopped on m2 and running on m1, while the memory of v is iteratively
copied by the hypervisor (out-of-band) from m1 to m2. The gateway inserts an SR header
(m1::fwp,m2::bfw, v) in the packets it receives for v. Since the virtual router on m1 sees that
the virtual interface of the VM is up, upon triggering of the fwp function, it will simply forward
these packets to that interface (skipping the m2 segment).

Second, the hypervisor has finished iteratively copying the memory of the VM to the new
host machine, and needs to perform the copy of the last memory pages as well as the CPU
state. At this point, the VM is stopped on both m1 and m2. The gateway still inserts an SRH
(m1::fwp,m2::bfw, v) in packets it receives. Now that the VM is stopped on m1 (which the
virtual router at m1 detects by inspecting the status of the corresponding virtual interface, now
in link-down state), the fwp function will simply forward packets to the next segment. Since m2

is not yet running the VM (which the virtual router at m2 detects by inspecting the status of the
corresponding virtual interface, also in link-down state), the bfw function will temporarily buffer
the packet.

Third, the VM is started back on machine m2. Before the controller (and thus the gateway) is
notified of this, the gateway has a stale mapping L(v) = M(m1,m2), and the same SRH is inserted
in the packets destined to v. Thus, the first machine m1 forwards these to m2. Now, the bfw
function on m2 will trigger release of the buffered packets to the virtual interface of the VM, and
further packets are forwarded without buffering.

Finally, the controller is notified of the end of the migration, and can update the gateway to
map v to L(v) = R(m2): normal operation resumes, packets reach m2 directly.

3.4 Evaluation

The SR functions described in section 3.3.2 have been implemented as VPP plugins. No col-
laboration between VPP and the hypervisor is needed; rather, forwarding decisions are made from
within VPP by inspecting the state of the vhost-user interface corresponding to the VM of inter-
est. Buffers for the bfw function are sized to 8192 packets (consuming 16 MB of RAM), allowing
to sustain MTU-sized traffic at ≈ 1 Gbps for a typical VM downtime of 100 ms.
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Figure 3.3 – Illustration of SR migration: ping experiment for the different mechanisms.

A simple testbed is set up with three physical machines, as in figure 3.1: the first plays the role
of a gateway gw, and the two other ones m1, m2 represent compute nodes, which are candidates to
host virtual machines. A client VM v1 (representing the “outside” of the data-center) is attached to
the gateway. A VM v0 represents a server that will be migrated. That VM is first running on m1,
then migrated from m1 to m2. In order to reflect this, the gateway is configured in the M(m1,m2)
state, i.e., it inserts (m1::fwp,m2::bfw, v0) in all packets destined to v0. Four mechanisms are
compared:

1. no-migration, i.e., the VM is not migrated;

2. non-SR migration (“baseline scenario”), i.e., the gateway is first in state R(m1), and once
the migration is complete the controller puts the gateway in state R(m2) (without going
through a migration state M(m1,m2));

3. SR migration without buffer, i.e., the gateway is in state M(m1,m2) but packets received
on m2 while the VM is not yet up are dropped instead of buffered;

4. SR migration with buffer (“zero-loss migration” as in section 3.3.2), i.e., the gateway is in
state M(m1,m2) and packets received on m2 while the VM is not yet up are buffered.

The baseline scenario serves as an illustration of mechanisms such as LISP-based migration [100],
wherein packet loss occurs due to the locator mapping being updated only after migration.

3.4.1 Ping (illustration)

In order to illustrate the behavior of these four mechanisms, a ping3 is run between the client
VM v1 and the server VM v0, while v0 is migrated. One packet is sent every millisecond, and
the RTT for each packet is recorded. Figure 3.3 shows the time at which an echo answer is
received as a function of when the corresponding echo request was sent. Without migration, each
answer is received approximately 0.1 ms after the corresponding query is sent. With non-SR
migration, packets were lost during 722 ms (corresponding to the VM downtime, plus the network
reconfiguration time), whereas with SR migration without buffer, packets were lost for only 174 ms
(corresponding to the VM downtime). Finally, with SR migration with buffer, 175 packets were
buffered while the VM was down, and replied to as soon as the VM went up again.

3.4.2 HTTP Workload

To understand the behavior of SR-migration when facing a delay-sensitive workload, a simple
evaluation scenario is carried out. The server VM v0 is set up with an Apache HTTP server –
serving a default static file (whose size is 12 KB). As previously, the VM is first running onm1, then
migrated from m1 to m2. A traffic generator is attached to the gateway, sending a Poisson stream
of 6000 queries with rate λ = 1500 s−1, during which the VM is migrated. The experiment is

3In its standard implementation, the ping6 utility adapts its sending rate if it sees that probes are not replied
to. For the purpose of these experiments, ping6 was recompiled so that packets are sent with the same rate, no
matter how many of them are not answered.
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Figure 3.4 – Evaluation of SR migration: response times for the HTTP workloads, λ = 1500 s−1 (log-log
scales).

repeated 10 times, for each of the four previously-introduced evaluation scenarios. VM downtimes
and number of lost or buffered packets (for this set of experiments, and all other experiments of
section 3.4) are reported in table 3.1. Response times for all queries are recorded and reported in
figure 3.4a.

The majority of queries are executed when the VM is not migrating, and exhibit small response
times (≤ 3 ms). The other queries correspond to those that started while the VM was migrating.
With non-SR migration, TCP SYN packets are lost when the VM is down, but some are also lost
after the VM has restarted on m2, due to the reconfiguration delay. Due to the SYN retransmit
delay of 1 s, those queries exhibit a response time ≥ 1 s (more than 19% of queries are concerned).
With SR migration without buffer, TCP SYN packets are lost when the VM is down, but as soon
as the VM is up they are successfully transmitted again. This explains why queries experiencing
a SYN retransmit are less numerous than with the baseline scenario: less than 4% of queries have
a response time greater than 1 s. Finally, with SR migration with buffer, TCP SYN packets are
buffered while the VM is down. The corresponding response time is simply delayed by the VM
downtime (≈ 100 ms in these experiments), rather by the SYN retransmit delay. Less than 0.7%
of queries exhibit a response time greater than 1 s, whereas more than 99.2% of queries have a
response time lower than 200 ms.

A similar experiment is performed on a more realistic workload, consisting of drawing a random
number k (from an exponential distribution with mean E[k] = 4) and serving k copies of the
previous static file. This allows to induce variability in the response times, as well as more network
traffic. Again, the experiment is repeated 10 times, and client response times are recorded: results
are depicted in figure 3.4b. With non-SR migration, more than 19% of queries are replied to within
1 s or more. In comparison, less than 4% of queries exhibit a response time greater than 1 s with
SR migration without buffer, and this drops to 0.4% for SR migration with buffer. Furthermore,
99.5% of queries are served within less than 200 ms with the latter mechanism.
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Figure 3.5 – Evaluation of SR migration: iperf experiments with 50 clients

3.4.3 Iperf Workload

The previous set of experiments gave insight on the behavior of the different migration mech-
anisms in presence of short-lived flows. To understand the influence of SR-migration on longer
connections, an experiment with throughput-intensive parallel TCP flows is performed. The same
experimental platform as in the previous section is used – except that this time, a delay of 2.5 ms
is added between the VM v1 (representing clients) and the VM v0 (representing the server to be
migrated), so as to represent clients outside the data center. An instance of iperf with 50 paral-
lel connections is started on the client VM, for 10 seconds (the rationale for using many parallel
connections is to smooth the effects of TCP congestion control). Meanwhile, the server VM is
migrated from m1 to m2, using the same 4 mechanisms as before. The experiment is repeated 10
times.

Figure 3.5a depicts the instantaneous throughput (aggregated over the 50 subflows) for one
of the 10 runs, collected every 0.5 s. Before and during VM migration, the throughput is rather
stable, oscillating around 3.5 Gbps. When the migration ends, around t = 7 s, there is a drop
in throughput, due to the VM downtime (≈ 150 ms in these experiments). While this drop
is significant with non-SR migration (going to 1.8 Gbps in the run reported in figure 3.5a), it
remains reasonably high with SR migration (2.7 Gbps in this experiment). The low performance
of non-SR migration can be explained by TCP reducing its congestion window, due to the large
amount of time when no packets are received by the VM. With SR migration, this downtime is
lower, and thus the congestion window is less reduced. The impact of buffering, versus dropping
packets while the VM is not yet up on the new host machine, seems to be negligible.

In order to quantify these behaviors, figure 3.5b depicts the distribution of the instantaneous
aggregate throughput (collected every 0.5 s), over all the 10 runs. With the no migration sce-
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Figure 3.6 – Evaluation of SR migration: iperf sink experiments with 50 clients

nario, the instantaneous throughput stays between 2.9 and 3.7 Gbps. SR migration is able to
maintain the throughput above 2.3 Gbps at all times, whereas with non-SR migration the instan-
taneous throughput can drop to 0.4 Gbps during the migration phase. With non-SR migration,
the throughput is lower than 2.2 Gbps for 5% of the time (compared to never with SR migration),
and lower than 2.9 Gbps for 10% of the time (compared to 5% of the time with SR migration).

3.4.4 Iperf Sink Workload

The same set of experiments is repeated, except that in this case the iperf instance running in
the VM is acting as a sink. This represents, e.g., use-cases where the VM receives a lot of data
– for instance, if it is an HTTP proxy or a firewall. In such a scenario, packets lost during the
migration process are actual data packets (rather than simple TCP acknowledgements packets, as
in the previous set of experiments), which is expected to have a greater influence on the overall
quality of service.

Figure 3.6a reports the instantaneous throughput (aggregated over the 50 subflows) for one
of the 10 runs, collected every 0.5 s. This time, the drop in throughput when using non-SR
migration is more critical, going to 0.2 Gbps. Figure 3.5b depicts the CDF of the instantaneous
aggregate throughput as collected every 0.5 s, over the 10 runs. Non-SR migration still exhibits low
performance, with the 5-th percentile for throughput being 0.6 Gbps, as compared to 1.9 Gbps for
SR migration. Furthermore, in this case, there is a (small yet perceptible) benefit from buffering
packets vs dropping them when using SR migration, as each x-th percentile for throughput is
greater with SR migration with buffer than with SR migration with drop.
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3.5 Summary of Results

This chapter has introduced a mechanism to perform zero-loss VM migration in IPv6 data-
centers. Contrary to traditional approaches, which maintain connectivity to migrating VMs re-
actively by updating the location of VMs after they have migrated, this chapter introduces a
proactive mechanism, which pre-provisions a logical path through which packets will flow shortly
before, during, and shortly after, migration.

This is enabled by the use of IPv6 Segment Routing, allowing to direct packets destined to
a migrating VM through this logical path. This way, coupling between the data plane and the
hypervisor is reduced to a minimum: the only operation that a virtual router performs upon receipt
of a packet, is checking whether the corresponding interface is up, and forward the packet locally or
to the next segment accordingly. Implementation on a real virtual router, VPP, and evaluation by
way of diversified workloads, show that the proposed mechanism is indeed able to provide zero-loss
VM migration, with benefits both in terms of TCP throughput and session opening latency.

Note that this chapter focuses on VMs processing traffic from/to the outside of the data-
center, i.e., egress-facing servers or virtual network functions. An interesting further question to
be investigated is how to use similar techniques to provide seamless migration for VMs handling
intra-data-center traffic.

Results from this chapter have been published in [79].



Chapter 4

Flow-Aware Workload Migration
in Data Centers

With the desirability of task (VM or container, also occasionally called “workload” in literature
[103]) mobility established in chapter 3, where it was also shown that it was possible to do so
without losses, the question of an optimal task migration mechanism naturally arises, which will
be investigated in this chapter. Task placement has been studied, and current approaches provide
mathematical models focusing on optimal usage of resources and on flow minimization [93], or
models that also consider migration but do not take the detailed network topology into account
[104,105].

This chapter introduces a multi-objective linear programming model of task migration that
satisfies per-node resources constraints and inter-nodes communication requirements while min-
imizing the cost incurred by migrations. The fundamental assumptions are (i) that tasks have
inter-communication demands that change with time, (ii) that tasks that communicate benefit
from being topologically close, and therefore (iii) that changes in inter-communication demands
may make a current task placement suboptimal, suggesting possible efficiency gains by relocation.
Hence, the developed multi-objective linear programming model of task migration is intended to
run iteratively, at regular time intervals. It uses task inter-communication demands to decide if
and where to re-allocate tasks so as to provide the best possible task placement, while minimizing
a migration cost. Network constraints are taken into account by modeling the traffic as a multi-
commodity flow problem, where a commodity represents an inter-task communication demand.

4.1 Statement of Purpose

For some distributed computing applications, where tasks frequently communicate with each
other, the limiting factor for the completion of a running task is not necessarily its actual location
(assuming that the task is placed on a machine with the full physical resources it needs), but can
be the throughput at which it exchanges data with other tasks. Furthermore, if those tasks have
changing traffic requirements, migrating them within the data center can be an efficient way to
re-organize the load across all available machines so as to optimally satisfy these requirements.

With these two assumptions as a baseline – tasks need to be placed according to their commu-
nication requirements, and those requirements can change over time – the multi-objective math-
ematical problem introduced in this chapter consists of determining a placement which satisfies
machine, network and applications constraints, while (i) maximizing the number of new tasks to be
assigned, (ii) minimizing the migration cost and (iii) maximizing the total inter-task throughput.

The contribution of this chapter is therefore threefold: (i) it formulates a model of task migra-
tion which uses an accurate description of network demands and of the network topology; (ii) it
proposes a multi-objective approach which generates a set of Pareto-optimal solutions, from which
the operator can choose according to operational tradeoffs; and (iii) it proposes a heuristic method
that can generate an approximate Pareto front while greatly reducing solving time as compared to
obtaining the exact solution.

Evaluations show that the sets of solutions generated by this approximation method remain
close to their optimal counterparts, regardless of the topology and the task-to-machine ratio.

33
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4.1.1 Related Work

Data center traffic has been extensively studied: it has been shown that the amount of intra-
rack traffic is as voluminous as is extra-rack traffic [41], and that patterns emerge when considering
the traffic matrix between interdependent tasks [106, 107]. Some task pairs communicate more
than others, in which case it makes sense to locate those on either the same machine, or on
machines close to each other in the network topology. Therefore, data center architectures have
been studied which take communication dependencies between tasks into account, from a network
systems perspective [42, 108]. This motivates the need for models that can place tasks according
to their pairwise communication demands.

The task placement problem consists of finding an efficient assignment of tasks to machines
within a data center, satisfying a set of constraints (resources, possibly traffic demand) with respect
to one or more objective functions such as energy consumption minimization [91,103,109–111], com-
munication cost minimization [92, 93], network traffic minimization or resource utilization maxi-
mization. Different optimization approaches have been proposed for the task placement problem:
solution techniques include deterministic algorithms, heuristics, meta-heuristics and approxima-
tion algorithms. Surveys of these methods can be found in [90, 112–114]. Many approaches have
been proposed that aim at optimizing a single objective. Multi-objectives formulations have also
been introduced, but they are often reduced to a mono-objective problem, failing to provide a set
of Pareto-optimal solutions.

Single-objective approaches: In [104], a model that considers resources constraints as well
as dependencies between applications is proposed, which then re-allocates tasks while minimizing
the migration impact. Contrary to the approach presented in this chapter, [104] does not con-
sider changing communication demands between applications, but only migrate tasks located on
overloaded machines. In [105], this model is refined by incorporating finer-grained server-side con-
straints, as well as network capacities of the machines. In [115], the problem of optimizing both
task placement and traffic flow routing so as to save energy is considered. A model is formulated
that minimizes the power consumption of switches and links, while satisfying capacity and traffic
demands constraints. In [92], a network-aware model is considered that places tasks with the aim
of minimizing communication cost. A greedy consolidation algorithm is proposed, consisting of
identifying task clusters based on network traffic (using a cost matrix). In [107], a traffic-aware
task placement model is introduced, where the objective is to minimize the aggregate traffic rates
perceived by every switch. A two-tier approach given by a cluster-and-cut heuristic is proposed.

Multi-objective reduced to single-objective: Some VM placement problems are formu-
lated as multi-objectives models, which are then reduced to single-objective models. In [116], the
authors consider the placement of VMs on machines by minimizing the size of clusters of VM
serving the same jobs, and minimizing the maximum traffic on uplinks of top-of-rack switches.
An iterative least-loaded-first based placement algorithm is proposed, which first gives the pri-
ority to locality, and then to channel occupancy. In [117], a power-efficient VM placement and
migration model is introduced, aiming at minimizing the number of machines used, the network
energy consumption and the network end-to-end delay. The model is solved using a weighted sum
approach. In [118], VM placement is considered under three objectives to be minimized: total
resource “waste”, power consumption, and thermal dissipation costs. The solution approach is
a combination of a generic grouping algorithm and a fuzz multi-objective evaluation. In [119], a
VM management framework considering initial VM placement and VM migration is introduced,
with three objectives: elimination of thermal hotspots, minimization of power consumption and
application performance satisfaction. The problem is solved using a weighted sum approach.

Pure multi-objective approaches: In [120], a bi-objective mathematical formulation for
VM placement is proposed, aiming at minimizing resource wastage and power consumption. A
multi-objective ant colony system algorithm is proposed to generate the set of non dominated
solutions. In [121] (extending [122]), a multi-objective formulation of the VM placement problem
is introduced, aiming at minimizing energy consumption and network traffic, and maximizing
economical revenue while satisfying a service level agreement (SLA). A memetic algorithm given
by an evolutionary process is proposed, and a Pareto set approximation is returned.

4.1.2 Chapter Outline

The remainder of this chapter is organized as follows. Section 4.2 introduces the framework
needed to represent the state of the data center. Section 4.3 presents the mathematical formulation
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Notation Description

i, i′, · · · ∈ It Tasks to be run at time t

m,m′, · · · ∈ M Machines

r, r′, · · · ∈ R Routers

A ⊆ (M∪R)2 Network edges

Amm′ ∈ 2A Path m 7→ m′

cuv > 0 Capacity of link (u, v)

κm > 0 Machine CPU capacity

ρi > 0 Task CPU requirement

σi > 0 Task size

Ct ⊆ It × It Communicating tasks at time t

dtii′ > 0 Throughput demand for i 7→ i′ at time t

xt
im ∈ {0, 1} Task i is placed on machine m at time t

f t
ii′(u, v) ∈ R

+ Flow for i 7→ i′ along (u, v) at time t

Table 4.1 – Inputs and variables to the model

proposed for the flow-aware workload placement and migration problem, given by a multi-objective
Mixed Integer Linear Program (MILP) [123]. Section 4.4 describes the algorithm used to gener-
ate the set of Pareto-optimal solutions to this problem, and provides a computational example.
An approximation method is proposed in section 4.5; its performance in terms of solving time
and quality of the generated approximate solutions (as compared to the optimal ones) are then
evaluated. Finally, section 4.6 concludes this chapter.

4.2 Data Center Representation

Before detailing the problem formulation (section 4.3), resolution (section 4.4) and approxi-
mation (section 4.5), this section introduces the framework used to describe the state (including
the topology) of a data center. This is achieved by considering (i) a set of machines, (ii) the
network topology connecting them, and (iii) a set of tasks to place on these machines. As this
model considers task migration, for which it is necessary to be aware of the evolution of the state
of the data center, the model makes the assumption that it is running at a given time t (where t
is an abstract index without unit), and that the previous state of the data center corresponds to
time (t − 1). Thus as a convention, a variable superscripted with t represents the current state
of the data center (to be optimized), and a variable superscripted with (t − 1) is a known input
representing the previous state of the data center. A summary of the notations used throughout
this chapter is provided in table 4.1.

4.2.1 Tasks and Machines

Tasks to be run at time t are represented by a set It. At time t, new tasks can arrive or existing
tasks can finish executing. Arriving tasks correspond to those in It \ It−1. Already existing tasks
correspond to those in It ∩ It−1, from among which those that were successfully assigned to a
machine at time (t− 1) have priority over new tasks and must be placed at some machine at time
t (they can continue execution on the same machine, or be migrated to another, but cannot be
stopped). Terminated tasks correspond to those in It−1 \ It, and thus are not of interest to the
model.

Machines are represented by a set M. Each machine m ∈ M has a CPU capacity κm > 0
which represents the amount of work it can accommodate. Conversely, each task i ∈ It has a CPU
requirement ρi > 0, representing the amount of resources it needs in order to run. Finally, each
task i ∈ It has a size1 σi > 0, which will be used to model the cost of migrating the task from one
machine to another.

1For instance, the size of RAM plus storage for a virtual machine.
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4.2.2 Network Model

In order to take application dependencies into account, the physical network topology existing
between the machines must be known. To that end, and as described in section 1.4, a network
is modeled as a directed graph G = (V,A), where V =M∪R is the set of vertices, with R the
set of routers and A the set of arcs. An arc (u, v) ∈ A can exist between two routers or between
a machine and a router, but also between a machine and itself to model a loopback interface (so
that two tasks on the same machine can communicate). Each of those arcs represents a link in the
network, and has a capacity of cuv > 0. For each ordered pair of machines (m,m′) ∈ M2, a list
Amm′ ∈ 2A represents the path from m to m′ (as illustrated in section 1.4).

Finally, at a given time t, an ordered pair of tasks (i, i′) ∈ It × It can communicate with a
throughput demand dtii′ > 0, representing the throughput at which i would like to send data to
i′. Let Gt

d = (It, Ct) be a weighted directed graph representing these communication demands,
where each arc (i, i′) ∈ Ct is weighted by dtii′ . The graph Gt

d will be referred to as the throughput
demand graph.

4.3 Mathematical Modeling

Based on the data center framework described in section 4.2, this section presents a multi-
objective Mixed Integer Non Linear Program (MINLP) aiming at optimizing task placement and
migration while satisfying inter-application network demands. A linearization as a multi-objective
MILP is then derived, allowing for an easier resolution.

4.3.1 Variables

Two sets of variables are introduced, representing (i) task placement and (ii) the network flow
for a particular placement.

Task placement The aim of the model is to provide a placement of each task i ∈ It on a machine
m ∈ M, at a given timestep t. The binary variable xt

im reflects this placement: xt
im = 1 if i is

placed on m, and xt
im = 0 otherwise.

Network flow In order to determine the best throughput that can be achieved between each
pair of communicating tasks, a variant of the multi-commodity flow problem [124, p. 58] is used,
where a commodity is defined by the existence of (i, i′) ∈ Ct. A commodity thus represents an
inter-task communication.

For each link (u, v) ∈ A, f t
ii′(u, v) is a variable representing the throughput for communication

from i to i′ along the link (u, v).

4.3.2 Constraints

Two sets of constraints are used to model this flow-aware workload migration problem: place-
ment constraints (equations (4.1-4.3)) represent assignment of tasks to machines, whereas flow
constraints (equations (4.4-4.8)) focus on network flow computation.

The placement constraints represent the relationship between tasks and machines. First, each
task i ∈ It must be placed on at most one machine:

∑

m∈M

xt
im ≤ 1, ∀i ∈ It (4.1)

Forcefully terminating a task is not desirable: if a task was running at time t − 1, and is still
part of the set of tasks at time t, it must not be forcefully terminated:

∑

m∈M

xt−1
im ≤

∑

m∈M

xt
im, ∀i ∈ It−1 ∩ It (4.2)

where xt−1
im is a known input given by the state of the system at time t− 1. If the task was already

successfully placed at time t− 1 (i.e., i ∈ It−1 and
∑

m∈M xt−1
im = 1) and is still to be run at time
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t (i.e., i ∈ It), the left-hand-side of the equation will be 1, thus forcing placement of the task at
time t.

Finally, the tasks on a machine cannot use more CPU resources than the capacity of that
machine:

∑

i∈It

ρi x
t
im ≤ κm, ∀m ∈M (4.3)

The flow constraints allow computing the throughput for each commodity (i.e., ordered pair of
communicating task). For each link (u, v) ∈ A in the network, the total flow along the link must
not exceed its capacity:

∑

(i,i′)∈Ct

f t
ii′(u, v) ≤ cuv, ∀(u, v) ∈ A (4.4)

For a commodity (i, i′) ∈ Ct, the flow going out of a machine m must not exceed the throughput
demand for the communication from i to i′. Also, the flow must be zero if task i is not hosted by
machine m:

∑

v:(m,v)∈A

f t
ii′(m, v) ≤ dtii′ x

t
im, ∀m ∈M, ∀(i, i′) ∈ Ct (4.5)

Conversely, for a commodity (i, i′) ∈ Ct, the flow entering a machine m′ must not exceed the
throughput demand for the communication from i to i′, and must be set to zero if task i′ is not on
m′:

∑

v:(v,m′)∈A

f t
ii′(v,m

′) ≤ dtii′ x
t
i′m′ , ∀m′ ∈M, ∀(i, i′) ∈ Ct (4.6)

Each router r ∈ R must forward the flow for each commodity – that is, the ingress flow must
be equal to the egress flow:

∑

v:(u,v)∈A

f t
ii′(u, v) =

∑

v:(v,u)∈A

f t
ii′(v, u), ∀u ∈ R, ∀(i, i′) ∈ Ct (4.7)

Finally, if a task i is placed on machine m and a task i′ on machine m′, the corresponding flow
must go through the path specified by Amm′ . Otherwise, the flow computed by the model could go
through a non-optimal path or take multiple parallel paths – and for simplicity of interpretation,
the latter is considered out-of-scope for this chapter. Hence, the flow needs to be set to zero for
all edges that do not belong to the path from m to m′:

f t
ii′(u, v) ≤ cuv(1− xt

im xt
i′m′),

∀(i, i′) ∈ Ct, ∀m,m′ ∈M, ∀(u, v) ∈ A \Amm′ (4.8)

This constraint has no side effect if task i is not on m or task i′ is not on m′, since in this case
it reduces to f t

ii′(u, v) ≤ cuv, already covered by equation (4.4).

4.3.3 Objective Functions

The migration model as presented in this chapter introduces three different objective functions,
modeling (i) the placement of tasks, (ii) the overall throughput achieved in the network and (iii)
the cost incurred by task migration, respectively. These functions depend on a placement, i.e.,
on an assignment of all variables xt

im and f t
ii′(u, v). Let xt (respectively f t) be the characteristic

vectors of the variables xt
im (respectively f t

ii′(u, v)).

The placement objective is simple and expresses that a maximal number of tasks should be
successfully placed on a machine. When removing inter-task communication, this degenerates to a
standard assignment problem wherein each task should be placed on a machine satisfying its CPU
requirement, while also not exceeding the machine capacity. The placement objective function is
simply the number of tasks which are successfully placed on a machine:

P (xt) =
∑

i∈It

∑

m∈M

xt
im (4.9)
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The throughput objective expresses the need to satisfy applications throughput demands. Mod-
eling network dependencies between tasks in a data center is usually (e.g., in [104]) done through
the use of a cost function depending on the network distance between two machines. Having
introduced a representation of the physical network and of applications dependencies in section
4.2.2, it is possible to represent the overall throughput reached in the data center. To compute
the throughput of the communication from a task i to a task i′, it suffices to identify the ma-
chine m on which i is running and take the flow going out of this machine for this commodity:
∑

m∈M xt
im

∑

v:(m,v)∈A f t
ii′(m, v). This expression is quadratic in variables xt

im and f t
ii′(u, v), but,

owing to the fact that (4.5) constrains the flow to be zero for machines to which i is not assigned,
can be simplified to

∑

m∈M

∑

v:(m,v)∈A f t
ii′(m, v). Therefore, the overall throughput in the data

center can be expressed as:

T (f t) =
∑

(i,i′)∈Ct

∑

m∈M

∑

v:(m,v)∈A

f t
ii′(m, v) (4.10)

Since each machine has a loopback link in the graph G (i.e., that (m,m) ∈ A, ∀m ∈ M), this
formulation also covers the case where i and i′ are hosted on the same machine.

Finally, the migration cost reflects the cost of moving tasks from one machine to another. The
fundamental assumption is that tasks in a data center have communication demands that can
evolve over time (modeled by dtii′). This means that migrating a task to a machine topologically
closer to those machines hosting other tasks with which it communicates, can be a simple way
to achieve overall better performance. The migration cost incurred between two successive times
(t − 1) and t is modeled as the sum of the sizes of tasks that have migrated. Since at time t,
the assignment xt−1 is known, it is possible to know if a task i ∈ It ∩ It−1 placed on a machine
m ∈M has moved, by comparing xt

im to (1−xt−1
im ). Also, if a task is to be shut off at time t (i.e.,

i ∈ It−1 \ It), it must not be part of the computation of the number of migrated tasks. The total
migration cost from time t− 1 to time t can thus be expressed as:

M(xt) =
∑

i∈It∩It−1

∑

m∈M

σi x
t−1
im (1− xt

im) (4.11)

Using these three objectives, it is possible to express the flow-aware placement and migration
model as a multi-objective MILNP:
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maxT (f t)

maxP (xt)

minM(xt)

subject to











(4.1-4.8)

xt ∈ {0, 1}It×M

f t ∈ (R+)C
t×A

(4.12)

These objectives tend to compete with each other. If a task starts communicating with another
task, migrating it to the same machine (or to a machine closer in the topology) can increase the
throughput at which they communicate, thus increasing the throughput objective function – but this
will incur an increase of the migration cost. Likewise, if a new task arrives at t and needs important
CPU resources, placing it right away can consume CPU capacity that could have been used for
co-locating tasks: increasing the placement objective can in some cases decrease the throughput
objective.

As an illustration, consider two machines m1 and m2 with CPU capacities κ1 = 1 and κ2 = 3,
with a bottleneck link (of capacity 1) in between. Assume that at (t−1) there were two tasks i1, i2
with CPU requirements ρi1 = 1 and ρi2 = 1, and that i1 was placed on m1 and i2 on m2. At time
t, i1 starts to communicate with i2 (with throughput demand dti1i2 = 2), and a third task i3 arrives
with CPU requirement ρi3 = 2. Then, if this new task is to be placed on some machine, m2 is the
only machine with enough capacity to host it. But placing i3 on m2 would prevent a migration of
i1 from m1 to m2, which would have increased the throughput of communication i1 7→ i2. This
situation is summarized in figure 4.1.
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Figure 4.1 – Competition between objective functions

4.3.4 Linearization

All constraints expressed in section 4.3.2 are linear with respect to the variables xt
im and

f t
ii′(u, v), except for the path enforcement constraint in equation (4.8). Exploiting the fact that
xt
im ∈ {0, 1}, this constraint can be linearized:

f t
ii′(u, v) ≤ cuv(2− xt

im − xt
i′m′),

∀(i, i′) ∈ Ct, ∀m,m′ ∈M, ∀(u, v) ∈ A \Amm′ (4.13)

If xt
im × xt

i′m′ 6= 1, the equation will be f t
ii′(u, v) ≤ cuv or f t

ii′(u, v) ≤ 2 cuv, and will therefore be
superseded by equation (4.4).

The set of constraints can be further compressed by writing only one equation per machine
m ∈ M instead of one per tuple m,m′ ∈ M. This does not alter the model but makes the
formulation more compact:

f t
ii′(u, v) ≤ cuv



2− xt
im −

∑

m′∈M:(u,v)/∈Amm′

xt
i′m′



 ,

∀(i, i′) ∈ Ct, ∀m ∈M, ∀(u, v) ∈ A (4.14)

In this way, the flow-aware workload migration problem can be expressed as the following
multi-objective Mixed Integer Liner Program (MILP):

(P ′)







































maxT (f t)

maxP (xt)

minM(xt)

subject to











(4.1-4.7), (4.14)

xt ∈ {0, 1}It×M

f t ∈ (R+)C
t×A

(4.15)

4.4 Flow-Aware Workload Migration

This section describes an algorithm (Algorithm 3) solving the previously introduced multi-
objective MILP (4.15). This algorithm runs at a given time t representing the “present”. It takes
the current inter-application communication requirements and the “past” (from time t − 1) task
placement as inputs, and returning a new placement as a solution.

4.4.1 Resolution Algorithm

A Pareto-optimal approach [123, p. 24] is used: a set of optimal solutions is generated,
from which a final solution zt = (xt, f t) can be extracted based on an operator-defined policy
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Algorithm 3 Multi-Objective Migration Algorithm

zt−1 ← input ⊲ initial state

Ct, dtii′ , B, εp, εp ← input ⊲ parameters

S ← ∅
for εp ∈ [εp, εp] with step δp do

for εm ∈ [B, 0] with step −δm do

if ∃z′ ∈ S, P (z′) ≥ εp ∧M(z′) ≤ εm then

continue ⊲ dominant solution already existing

end if

z← solution of (4.18)
⊲ if z is not dominated, it is a candidate solution

if 6 ∃z′ ∈ S, z′ ≻ z then

⊲ remove any existing solution dominated by z

for z′ ∈ S do

if z ≻ z′ then

S ← S \ {z}
end if

end for

S ← S ∪ {z} ⊲ add z to candidate solutions

end if

end for

end for

⊲ select the best solution according to the considered policy

zt ← getSolutionFromPolicy(S)

getSolutionFromPolicy(). In the context of this migration model, a placement z = (x, f) domi-
nates a placement z′ = (x′, f ′) if all the objectives functions of the former have better values than
the ones of the latter (with at least of one having a strictly better value). That is denoted z ≻ z′:

z ≻ z′ ⇔



















P (z) ≥ P (z′)

T (z) ≥ T (z′)

M(z) ≤M(z′)

(P (z), T (z),M(z)) 6= (P (z′), T (z′),M(z′))

(4.16)

A set S = {z1, . . . , zn} of solutions is Pareto-optimal if and only if:

∀(z, z′) ∈ S2, z 6= z′ ⇒ (z 6≻ z′ ∧ z′ 6≻ z) (4.17)

To generate the set of Pareto-optimal solutions for the multi-objective problem, the ε-constraint
method [123, p. 98] is used. It consists of reducing a multi-objective linear programming model
to a single-objective model, by relaxing all objective functions but one and considering them as
constraints. These constraints are obtained by bounding the relaxed objective function by a number
ε that varies in a certain interval. Although its initial formulation only considers two-objectives
problems, it can be extended to problems with a greater number of objective functions [125], as it
is the case here.

The two functions that are relaxed are the placement objective and the migration cost, because
it is simple to grid the corresponding space. The single-objective MILP that results is given by:

(Pε)







































maxT (f t)

subject to































(4.1-4.7), (4.14)

P (xt) ≥ εp

M(xt) ≤ εm

xt ∈ {0, 1}It×M

f t ∈ (R+)C
t×A

(4.18)

where εp, εm are bounds varying in [εp, εp] and [0, B] respectively.
For the placement objective, a simple upper bound for εp corresponds to the number of tasks:

εp =
∑

i∈It

1 = |It| (4.19)
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m1,1 m1,10

r1

... m2,1 m2,10

r2

...

r0

Figure 4.2 – Network topology used in the example run

u = r0, v ∈ {r1, r2} cuv = cvu = 40

u ∈ {r1, r2}, v ∈M cuv = cvu = 40

u ∈M cuu = 200

Table 4.2 – Link capacities for the example topology

Similarly, a lower bound for εp can be easily derived from tasks that were running at the previous
iteration and that are still to be run. As per equation (4.2), they cannot be forcefully terminated:

εp =
∑

i∈It−1∩It

∑

m∈M

xt−1
im (4.20)

For the migration cost, correctly choosing the upper bound B for εm has a large impact on the
running time of the algorithm. This bound B will be referred to as the migration budget.

4.4.2 Computational Example

In large-scale deployments, the amount of CPU resources is likely sufficient for all tasks to be
deployed. However, complex situations can exist, for which it is beneficial to have an understanding
of the implications that different placement choices can have. For instance, when new tasks arrive
that have a high CPU requirement, choosing to place them upfront can consume CPU capacity
which could have been used to migrate a smaller task and satisfy its throughput demand. This
section illustrates the model response in situations where placement and migration are competing
with each other, by way of an environment in which the machines are nearly overloaded in the
initial state. The algorithm has been implemented in Python using the Gurobi MILP solver [126],
and all the simulations have been run on a virtual machine with 4 GB of RAM and an 2.6 GHz
CPU.

Simulation Parameters

A simple two-tier tree topology is used, consisting of one root router r0 linked to two ToR
routers r1, r2, each linked to 10 machines (Figure 4.2). In order to represent the fact that tasks
located on the same machine can achieve a higher throughput, each machine has a link to itself,
with a higher capacity than other links in the data center, as depicted in Table 4.2.

The CPU capacity is set to 3 for each machine – which gives a total capacity of 60. An initial
state with 40 tasks with CPU requirement ρi = 1 and a throughput demand graph Gt−1

d with 80
arcs of intensity dt−1

ii′ = 10 is considered, with an initial placement zt−1 that is optimal with respect
to throughput demands2.

Given this initial placement, this study explores the model behavior when communication
demands of existing tasks change, while new bigger tasks arrive in the system. Communication
demand changes are modeled by adding 10 random arcs (of intensity dtii′ = 10) between the already
running tasks. Arrival of new tasks is modeled by creating 10 new tasks with CPU requirement
ρi = 2, and by adding 10 random arcs (of intensity dtii′ = 5) going out of these tasks.

2zt−1 is obtained by starting from a random state and solving (4.15) where only the throughput objective is
considered, with the additional constraint that all tasks must be allocated.
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Figure 4.3 – Multi-objective model example run: solutions and Pareto-optimal solutions.

Results

In order to obtain the set of Pareto-optimal solutions S at time t, one iteration of Algorithm 3
was run. Figure 4.3 shows a three-dimensional representation of the solutions computed for one
of those runs: Pareto-optimal solutions can be visually identified as those for which no other
solutions have better coordinates in all dimensions. Results show that non-trivial behavior occurs
when the data center is almost fully loaded: while placing a few new tasks improves the overall
throughput, allocating all of them has a detrimental effect on the overall throughput because it
prevents migration of other tasks.

This shows the interest of using a multi-objective model in cases where the objectives are
conflicting with each other.

4.5 Pareto Front Approximation

Section 4.4 introduced a generic solution approach, which allows to compute the exact Pareto
front for the three competing objectives (placing the highest number of tasks, minimizing the cost
incurred by migration, achieving the best inter-application throughput) by way of an ε-constraint
method. Although this approach generates an exact set of efficient solutions, and thus can be useful
for small and highly-constrained deployments, its computational complexity makes it unsuitable
to model larger infrastructures.

In order to overcome this issue, this section derives and experimentally analyses a heuristic
for approximating the Pareto front. Section 4.5.1 introduces the approximation method, and
section 4.5.2 provides the results of computational experiments in order to validate the quality of
the proposed approach.

4.5.1 Heuristic Formulation

In large deployments, it is assumed that there are enough resources to accommodate all tasks
to be run, thus the remainder of this section assumes that all tasks can be placed (i.e., that there
exists at least one solution to (4.18) such that P (x) = |It|). In order to focus on migration, it is
also assumed that no new task arrives (i.e., It = It−1 := I).

Given this assumption, a heuristic allowing to approximate the Pareto front in the throughput-
migration plane, i.e., for (P (z), T (z),M(z)) ∈ {|I|}×[0,+∞)×[0, B], is introduced. The issue with
the ε-constraint approach introduced in section 4.4 is that, when considering the migration of B
tasks, there are O(|I|B |M|B) possible recombinations, which can be computationally expensive. In
order to limit the combinatorics of the recombination, the introduced heuristic splits the migration
process in smaller chunks, considering fewer migrations at a time, and proceeding in a greedy way
until the total budget is exhausted, as described in Algorithm 4.
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Algorithm 4 Heuristic Multi-Objective Resolution

zt−1 ← input ⊲ initial state

Ct, dtii′ , B ← input ⊲ parameters

µ← 0 ⊲ total migration cost

∆← input ⊲ incremental budget

Ŝ ← ∅
ẑ0 ← zt−1

τ ← 1 ⊲ step index

while µ < B do

⊲ reduce ∆ at last iteration so that µ+∆ ≤ B
∆← min{∆, B − µ}
⊲ find a placement within ∆ of the previous one

ẑτ ← solution of







maxT (f̂τ )

subject to







(4.1-4.7), (4.14) with t 7→ τ

P (x̂τ ) = |I|
M(x̂τ , x̂τ−1) ≤ ∆

x̂τ ∈ {0, 1}I×M

f̂τ ∈ (R+)C
t×A

if M(x̂τ , x̂τ−1) = 0 then

break ⊲ stop if no task could be migrated

end if

Ŝ ← Ŝ ∪ {ẑτ}
⊲ compute the migration cost w.r.t. initial state

µ←M(x̂τ , x̂0)
τ ← τ + 1

end while

zt ← getSolutionFromPolicy(Ŝ)
return zt

For clarity, let M(xt,xt′) represent the migration cost when going from state xt to xt′ :

M(xt,xt′) =
∑

i∈I∩It′

∑

m∈M

σi x
t′

im(1− xt
im) (4.21)

Let ∆ > 0 be a parameter representing an incremental budget. Starting from an initial con-
figuration zt−1, and given an upper-bound B on the migration cost, intermediary states (ẑ0 =
zt−1, ẑ1, . . . , ẑτ , . . . , ẑτ ) are created. At each step τ ≥ 1, a new placement is generated by maxi-
mizing the throughput objective, with the constraint that no more than ∆ is incurred as a migration
cost as compared to step (τ − 1). This way, no more than O(|I|∆|M|∆) recombinations are con-
sidered at each step, allowing for a smaller expected computational complexity. This process ends
when no further tasks can be migrated, or when a total migration cost of B (as compared to
step 0) has incurred. The heuristic tracks the solutions generated while generating the successive
solutions, so as to build an approximate Pareto front Ŝ.

4.5.2 Computational Experiments

This section experimentally illustrates the benefits of using the Pareto front approximation
heuristic, both in terms of computational complexity and quality of the approximation. The
sensitivity of the heuristic to the incremental budget parameter ∆ is also experimentally explored.
The experimental platform is the same as in section 4.4.2.

Simulation Parameters

In a common data center, all machines in a rack are linked to a top-of-rack (ToR) router, and
those ToR routers are linked to each other via an aggregation router. In data centers, several such
configurations can be linked together by way of a third routing layer – in all cases, resulting in a
tree-like topology, as described in section 1.1.2.

For the purposes of these simulations, a k-rack topology is defined as a tree where a core router
r0 is attached to k ToR routers r1, r2, . . . , rk. Each ToR router rh (1 ≤ h ≤ k) is attached to
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u = r0, v ∈ {r1, . . . , rk} cuv = cvu = 40

u ∈ {r1, . . . , rk}, v ∈M cuv = cvu = 40

u ∈M cuu = 1000

Table 4.3 – Link capacities for the k-rack topology
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Figure 4.4 – Pareto front approximation: Exact Pareto front and approximate Pareto fronts from Algo-
rithm 4 for ∆ ∈ {1, 3, 5}.

10 machines mh,1,mh,2, . . . ,mh,10. This topology thus comprises 10× k machines, and Figure 4.2
depicts a 2-rack topology. Links capacities are set as per Table 4.3, i.e., links between the core
router and the ToR routers, and between the ToR routers and the machines have a capacity of 40.
Loopback interfaces on the machines have a capacity of 1000 – so as to favor placement of tasks
which communicate with each other on the same machine.

Five k-rack topologies are considered, for k ∈ {2, 3, 4, 5, 10} (for a corresponding number of
machines |M| ∈ {20, 30, 40, 50, 100}). For each of these topologies, four scenarios are considered
with different tasks-per-machine ratios, such that |I| ∈ {|M|, 2|M|, 5|M|, 10|M|} – as a way to
compare between different load factors for the machines. This makes for a total of 5 × 4 = 20
scenarios.

CPU requirements of tasks are set to ρi = 1, and CPU capacities of the machines to κm = 20.
This allows for up to 20 tasks per machine, thus ensuring that all tasks can always be placed. To
simplify understanding the migration cost, tasks size (for computing the migration cost) are set to
σi = 1, thus the migration cost simply becomes the number of migrated tasks. Tasks are initially
uniformly randomly assigned to the machines. The communication matrix is generated by: (i) for
each task i ∈ I, uniformly choosing a random number Di of destinations in {1, 2, 3}, (ii) for each of
these Di destinations, uniformly choosing a task i′ ∈ I \ {i} and (iii) setting a throughput demand
dii′ for the communication i 7→ i′ uniformly in {1, 2, . . . , 10}.

For each of these 20 scenarios, the exact Pareto front is computed using Algorithm 3, with a
migration budget (maximum migration cost) B = 30. The approximate Pareto front as described
in Algorithm 4 is computed for five different values of the incremental budget ∆ ∈ {1, 2, 3, 4, 5}.

Comparative Results

In order to illustrate the results, the cases of the 2-rack topology (20 machines) with 40 and
100 tasks are first considered as examples. For these two cases, Figures 4.4a and 4.4b depict
the generated exact and approximate Pareto fronts. Those figures show the different solutions
from among which one can be chosen, after running either algorithm. As depicted in the figures,
migrating more tasks obviously increases the migration cost – while enabling communicating tasks
to be co-located, hence increasing the total achievable throughput.
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Figure 4.5 – Pareto front approximation: throughput improvement for 20 and 30 migrations, θ20/θ0
and θ30/θ0. Exact Pareto front vs approximate Pareto fronts from Algorithm 4 for ∆ ∈ {1, 2, 3, 4, 5}. 20
different scenarios.

Depending on requirements, a solution can be chosen from the Pareto-optimal set that offers
a tradeoff between improving the overall throughput and incurring more migrations. In these two
examples, it can be observed that the approximate Pareto fronts generated by algorithm 4 for
∆ ≥ 3 closely follow the exact front. It can also be observed that for ∆ = 1, results are of lower
quality, and that in the example of Figure 4.4b, the algorithm was unable to find solutions for
more than 24 migrations.

In order to quantify the impact of these algorithms on the quality of the obtained solution
set, let θ20 (respectively θ0, θ30) represent the throughput corresponding to a migration cost of 20
(respectively 0, 30) in the Pareto front. More formally, this means that θ20 is the coordinate such
that (|I|, θ20, 20) ∈ S; for instance, in Figure 4.4b, θ20 = 876 for the exact Pareto front. Figure 4.5a
(respectively 4.5b) shows the throughput improvement θ20/θ0 (respectively θ30/θ0) for the 20 tested
scenarios, for the exact Pareto front as well as the approximate Pareto fronts. This represents
the relative improvement in terms of overall throughput if the operator chooses to migrate 20
(respectively 30) tasks after inspecting the set of Pareto-optimal solutions. It appears that, for
∆ ≥ 2, the achievable throughput improvement when using the heuristic method introduced in
section 4.5.1 is close to the exact solution. Overall, choosing ∆ = 5 yields the better results: for
20 migrations, the results are better in all the twenty tested instances, and for 30 migrations they
are outperformed by ∆ = 4 in only three instances. For ∆ = 5, the throughput improvement
remains within a 3% error as compared to the exact solution after 20 migrations, and within a 5%
error after 30 migrations. Using ∆ = 1 yields results of lower quality, because the algorithm is not
able to explore reconfigurations with two migrations at the same time (i.e., swapping tasks), and
because it can terminate prematurely if the throughput cannot be improved by migrating only one
task. For 20 migrations, ∆ = 3 also yields results of lower quality, but this is more of an artificial
nature: the number of migrations considered is 18 instead of 20 (since 20 is not a multiple of 3).

Finally, Figure 4.6 depicts the time needed to generate the exact and approximate Pareto fronts.
While computing the exact Pareto front is very time-consuming, the approximation heuristics
introduced reduces the required computation time. Overall, the lowest computation times are
achieved for ∆ ∈ {3, 4, 5}, whereas ∆ ∈ {1, 2} exhibit higher running times. The choice ∆ = 5,
which can be observed to exhibit the best results, in terms of throughput improvement, in the
majority of cases – with a computation time constantly better than the reference exact approach,
performing approximately one order of magnitude faster when B = 30 (from 5.1× faster for 100
machines and 200 tasks, to 1800× faster for 30 machines and 60 tasks).

To conclude, the approximation method presented in section 4.5.1 can greatly reduce the time
needed to compute a set of approximate Pareto optimal solutions, while generating solutions close
enough to the exact ones. It is realistic to note that, although an improvement in solving time is
observed regardless of the topology size, Figure 4.6 suggests that using a MILP approach (exact
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Figure 4.6 – Pareto front approximation: time to generate the approximate Pareto front, for up to
B = 30 migrations. Exact Pareto front (Algorithm 3) vs approximate Pareto fronts (Algorithm 4) for
∆ ∈ {1, 2, 3, 4, 5}. 20 different scenarios.

or approximate) might be unfit for too large topologies.

4.6 Summary of Results

In data centers, applications may exhibit time-varying communications dependencies, and mi-
grating tasks in such environments can be a means to re-distribute the load over the whole in-
frastructure, while optimizing inter-task communications. In this chapter, a linear programming
framework is introduced, which represents the data center topology, and communications depen-
dencies between tasks. Using this framework, a multi-objective model is developed, which, when
solved, can propose a reorganization of tasks so as to (i) place the highest number of new tasks,
(ii) maximize the overall achievable throughput, and (iii) minimize the migration cost incurred by
this reorganization.

The approach developed is generic with respect to the network topology and the inter-application
communication demands, and is novel in that, when compared to other workload migration frame-
works, it generates a set of Pareto-optimal solutions. From among this solution set, a placement
can be chosen, which yields the best tradeoff in terms of throughput improvement versus the cost
incurred by task migration. A solution algorithm using the ε-constraint method is proposed as a
baseline. Then, a heuristic is presented, which generates an approximate Pareto front. Computa-
tional experiments on different topologies show that the proposed approximation builds solutions
close to the optimal Pareto front, while greatly reducing the computation time.

Having shown the desirability of considering inter-application dependencies in migration mod-
els, an interesting question that arises is how the proposed model can be extended to take into
account more fine-grained parameters. These could include the distance between source and des-
tination hosts when migrating, the energy cost induced by machines which are on or off, and the
possibility to load-balance flows across multiple paths.

Results from this chapter have been published in [80].
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Chapter 5

Reliable Multicast with BIER

Developed alongside their unicast counterparts, multicast protocols were never offered as uni-
versally available network services in the Internet [67] – in part, as the operational complexity of
multicast was perceived as exceeding the potential benefits from efficient one-to-many distribution
of content. “Native” multicast was therefore, when available, confined to within single networks,
or even to within single links – and multicast between sites (“inter-network multicast”) was estab-
lished by way of overlays (e.g., MBONE [127]). The complexity of multicast protocols is in part
due to their group-based nature: schematically, when a client wishes to receive messages sent to a
multicast group, it will explicitly and periodically send join messages to its “local multicast router”
(using IGMP). This router will forward these join message upwards in the multicast tree (using
e.g., PIM [66]), until reaching the multicast source. Intermediate routers are expected to build,
and maintain, flow state (a minima, a multicast tree) for as long as join messages are regularly
received, in order to provide connectivity to all members of the multicast group.

Bit-Indexed Explicit Replication (BIER) [8] was designed to eliminate this complexity, and to
enable lightweight inter-network multicast – with the ambition being that intermediate routers
maintain no flow state, other than that of an existing unicast routing table, and that intermediate
routers are not involved in group management. The key idea in BIER, as described in section 1.2.2,
is that the source of a multicast data packet encodes the set of destinations (i.e., the members of
the group) as a bitstring, and includes this bitstring in the header of each multicast data packet.
Intermediate routers only need to be able to interpret that bitstring – leaving group management
a matter for only the clients and the source.

(a) Initial transmission (b) Multicast retransmission

(c) Unicast retransmission (d) BIER retransmission

Figure 5.1 – Comparison of different reliable multicast mechanisms. In this example, two clients do not
receive a packet and send a NACK to the source (a). Multicast retransmissions (b) will vainly incur traffic
towards the clients that had successfully received the packet. With unicast retransmissions (c), identical
packets will be transmitted on the same link. BIER retransmissions (d) ensure that the traffic footprint is
minimal.
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5.1 Statement of Purpose

The original BIER specification [8] emphasizes the flexibility provided by BIER at the flow
level, allowing for adding to and removing from the set of destinations of a flow without the need
of building multicast trees and maintaining flow state in the routers. It is possible to take this
one step further to modifying the set of destinations on a per-packet basis, and to do so without
incurring any additional overhead.

This flexibility can be used to develop efficient reliable multicast: if the source of a multicast
data packet is informed as to the set of destinations to which a retransmission is required, it can
use BIER for minimizing the traffic footprint of this retransmission: by setting the bitstring so as
to contain only the destinations affected by a multicast data packet loss, the retransmission will
be forwarded only along the shortest path tree covering the source and these destinations.

This chapter studies this use of BIER for reliable multicast – and compares this “reliable
BIER” to two reliable multicast references: (i) the mechanisms known from e.g., NORM [128], in
which the source, when informed about a destination in the multicast group being affected by a
multicast data packet loss, will retransmit the multicast data packet to all destinations, and (ii)
retransmission by way of unicast(s) to those destinations affected by a multicast data packet loss:
this is for instance the case in RMTP [129], if the number of affected destinations is below a given
threshold.

Figure 5.1 illustrates the intuition that when faced with a multicast data packet loss (fig-
ure 5.1a), a NORM-style retransmission from the source and to the entire multicast group (natu-
rally) will impose a load on all links in the multicast tree, regardless of if they lead to destinations
affected by a multicast data packet loss (figure 5.1b). Unicast retransmissions (figure 5.1c), while
traversing only the shortest-path tree between the source and the destinations affected by a mul-
ticast data packet loss, may cause the same multicast data packet to be retransmitted across the
same link multiple times – whereas BIER utilizes only the shortest path tree between the source
and the destinations affected by a multicast data packet loss, with each packet only retransmitted
across the same link once (figure 5.1d). This chapter formalizes a simple, reliable, multicast mech-
anism using BIER, and examines if the suggested intuition holds – and in which conditions. To
that purpose, network simulations are conducted, and an analytical model is developed.

(Semi-)Reliable Multicast

While the term “reliable” is used throughout this chapter, and is generally used in the lit-
erature, it is perhaps more realistic to describe the attained multicast network services as semi-
reliable. For example, maintaining a retransmission buffer (regardless if centralized at the source
or distributed/peer-based) indefinitely is hardly feasible – nor will excessive retransmissions neces-
sarily increase the overall success rate across heavily congested paths. Therefore, this chapter will
not consider mechanisms whereby a source adapts its sending rate to the worst destination; rather,
it will assume that the source sends a stream at a fixed rate (e.g., a live broadcast media stream),
and that destination applications might decide to give up on certain packets – if they are behind
heavily congested links, and/or if they no longer would need the packet after retransmission.

5.1.1 Related Work

While never widely deployed as an inter-networking service, several reliable multicast protocols
have been developed [130]. Reliable multicast protocols assume the existence of a multicast tree,
to which are added (i) detection, (ii) reporting, and finally (iii) repairing of packet losses – the
latter, through successful retransmission of lost packets. These mechanisms differ, depending on
how reliability is understood, on the intended set of receivers, on transmission requirements, and
on which trade-offs are acceptable for a given usage [131].

Loss estimation and recovery can be handled exclusively at the source, such as with the “xPress
Transfer Protocol” (XTP) [132], a sender-reliable protocol (using acknowledgements and retrans-
mission timers) designed for small sets of receivers. For larger multicast groups, the “Reliable
Multicast Protocol” (RMP) [133] pushes responsibility for detecting losses and requesting retrans-
missions to the receivers, through NACKs. “Log-Based Receiver-reliable Multicast” (LBRM) [134]
uses a log server for caching packets sent by the source, which also reacts to requests for retrans-
missions. A hierarchical architecture is suggested: a destination that has not received a packet will
first solicit retransmission from a local log server – and only if that fails, will solicit a primary log
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server. With the “Reliable Multicast Transport Protocol” (RMTP), [129] proposes a hierarchical
architecture, wherein intermediate routers in the multicast tree will contribute retransmissions in
case of isolated losses, but with global recovery handled by the source. [135] introduces “Scal-
able Reliable Multicast” (SRM), which uses receiver-based reliability (receivers detect losses and
request retransmissions) combined with low-rate multicast by every member to report the high-
est sequence number received. The “Tree-based Multicast Transport Protocol” (TMTP) [136] is
another instance of a reliable multicast protocol, wherein destinations are grouped in a tree of
different domains, within which local recovery can be performed.

The IETF standardized “Negative-acknowledgment Oriented Reliable Multicast” (NORM)
[137], using NACKs and source-based retransmissions to attain reliability. NORM also proposes re-
dundancy and recovery by way of Forward Error Coding (FEC) – either proactively, or in response
to negative acknowledgements. A TCP-friendly congestion-control mechanism has been proposed
in [138]. The IETF has also examined the “Pragmatic General Multicast” (PGM) protocol [139],
a hierarchical receiver reliable protocol, targeting large multicast groups. Losses are reported via
unicast NACKs and recovery can be performed by retransmission from a Designated Local Repair-
ers (i.e., not necessarily from the source), also via multicast. This is similar to RMTP, in which
retransmissions are performed by Designated Receivers – though RMTP supports both unicast and
multicast retransmissions, depending on the number of reported losses of a given packet.

In the context of data-centers, [140] proposes the end-host based protocol “Reliable Data Center
Multicast” (RDCM): through a central controller, RDCM explicitly builds a multicast tree, and a
multicast-tree-aware backup overlay, for data dissemination. Retransmissions are performed on a
peer-to-peer (unicast) basis: every receiver is responsible for providing, if needed, retransmissions
for up to two of its peers.

The performance of reliable multicast protocols has been studied both analytically and through
network simulations. For example, [141] develops an analytical model and carries simulations to
study the performance of a generic reliable block-based multicast protocol using stop-and-wait,
positive acknowledgements, and selective retransmissions. This model quantifies the number of
transmission attempts until full reception, assuming independent losses in different links. [142]
investigates the optimal placement of FEC in reliable multicast trees, by way of studying generic
models of such trees (i.e., a single path common to all receivers, a set of completely separate paths
to each receiver) and a refinement of the model developed in [141]. The number of successful
receptions for different types of trees is studied by way of analysis and simulation in [143], which
also derives a generic approximation for the expected number of transmissions for reliable delivery.

Finally, models relying on TCP overlays for multicast have also been developed: [144] introduces
the One-to-Many TCP Overlay for reliable multicast services, as an application-level multicast
alternative to IP reliable multicast; [145] studies the performance of TCP-based reliable multicast
trees, built as a set of reliable point-to-point links, in data-centers.

5.1.2 Chapter Outline

The remainder of this chapter is organized as follows: section 5.2 details the use of BIER for
light-weight, reliable multicast. Section 5.3 and section 5.4 evaluate the performance of this reliable
multicast mechanism (denoted reliable BIER) in different topologies and with different losses, by
way of network simulations – and compare the performance with other reliable multicast mecha-
nisms. Generalizing the observations from the network simulations, section 5.5 provides an ana-
lytical study of reliable BIER performance. Finally, section 5.6 concludes this chapter.

5.2 Reliable BIER – Specification

To provide reliable multicast as a network service transparent to applications, reliable BIER
is designed to operate as a shim-layer above the network layer, as depicted in figure 5.2. This
reliable BIER shim layer is upper-layer agnostic, and as such supports both standard transport
layers (such as UDP) and encapsulation mechanisms such as IP-in-IP.

The reliable BIER shim layer assumes a unique flow ID from the upper layer, and maintains
for each flow ID a sequence number, monotonically increased for each new packet being handed by
the upper layer. The tuple (flow ID, sequence number) allows uniquely identifying each original
multicast data packet in the network, identifying when a multicast data packet is received out of
order, etc. For many transport layers, the flow ID would be a hash of the tuple (protocol number,
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Figure 5.2 – BIER shim layer

source IP address, source port), whereas for more specific transport layers a transport-layer-specific
identifier could be used (e.g., the session ID for QUIC [146]).

For each outgoing multicast data packet, the reliable BIER shim layer takes a destination set,
rather than a single destination IP address, from the upper layer – and compresses this into the
destination-bitstring. The destination-bitstring and the sequence number comprise the reliable
BIER header, to be included in each multicast data packet. The precise form of the reliable BIER
header has no algorithmic significance – but in an IPv6 context can, for instance, take the form of
a destination options extension header.

For each incoming multicast data packet, the reliable BIER shim layer at each destination
will inspect the sequence number to detect losses, and signal losses by way of sending negative-
acknowledgements (NACKs) from destinations towards the source. Having this signaling only
involve the end-points (source and destinations) serves, in part to run the protocol over any “stan-
dard” set of BIER routers doing best-effort forwarding1, and in part to facilitate deployment (only
the end-points need to agree on parameters, for example). As in other reliable multicast protocols,
e.g., [128, 139], NACKs are used in order to avoid an “ACK storm”. Of course, for very large
error rates or errors affecting a wide range of destinations, this may lead to a “NACK storm”.
Such a storm of control traffic could be avoided e.g., by allowing intermediate routers to aggregate
NACKs before forwarding them upwards, without changing the end-to-end behavior specified in
this chapter.

For the purpose of this chapter, a slightly modified socket API is used – specifically, allowing
the sender to provide the set of destinations (rather than a single multicast group address) to which
a multicast data packet is to be forwarded.

5.2.1 Source Operation

A reliable BIER source operates as detailed in algorithm 5. On sending a packet through a
socket, the reliable BIER shim layer caches a copy of the packet, with which it associates a BIER
retransmit bitstring with all bits cleared, and a timer of duration ∆tagg, where ∆tagg represents
a window of time between the first NACK is received and a retransmission is made. Within
this window, for each NACK received, the corresponding bit in the BIER retransmit bitstring
is set; at the end of this window, the cached multicast data packet is retransmitted with the
destination-bitstring set to the associated BIER retransmit bitstring. This permits aggregation
of retransmissions to multiple destinations in a single BIER packet, thus potentially reducing the
number of transmissions of this packet. If after retransmission, a subsequent NACK for the same
packet is received, a new ∆tagg window is opened and the aggregation mechanism is restarted.

1It is to be noted, however, that if intermediate routers provides caching capabilities (as for instance in Infor-
mation Centric Networks [22]), they could be extended to intercept NACKs and perform retransmissions in place
of the source. This would not change the end-to-end behavior as specified in this chapter.
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Algorithm 5 Reliable BIER Source Operation

∆tagg ← NACK aggregation delay
w ← packet cache window size
F ← unique flow identifier
B ← destination bitstring
S ← 0 ⊲ sequence number

C ← {} ⊲ packet cache

R← {} ⊲ retransmit bitstrings

T ← {} ⊲ retransmit timers

for each outgoing packet p do

insert reliable BIER header with flow F , seq S
insert BIER header with bitstring B
transmit p
C[S]← p,R[S]← 0, T [S]←∞
delete C[S − w], R[S − w], T [S − w] ⊲ garbage collection

S ← S + 1
for s ∈ C with T [s] ≤ Tnow do ⊲ perform retransmits

p← C[s] ⊲ retrieve cached packet

insert reliable BIER header with flow F , seq s
insert BIER header with bistring R[s]
transmit p
R[s]← 0, T [s]←∞

end for

end for

for each received NACK packet with flow F , seq s, bit b do

if s ∈ C then

R[s] = R[s] OR 2b ⊲ add b to the retransmit bitstring

T [s]← min{T [s], Tnow +∆tagg} ⊲ schedule retransmit

end if

end for

5.2.2 Destination Operation

A reliable BIER destination operates as described in algorithm 6. In short, a destination will
send a NACK to the source when it detects that a packet was lost – a packet being deemed lost
when one of its successors is received2. If necessary, NACKs for a lost packet are then retransmitted
regularly by way of a timer, until a retransmission is received.

More precisely, for each incoming multicast data packet, the reliable BIER shim layer parses
the reliable BIER header and either hands it off to the upper layer, or (if received out-of-order)
records it in a buffer, C. For each multicast data packet that (1) is received out-of-order, and (2)
creates a “hole” (i.e., a set of missing packets between two consecutively received packets) in C,
the reliable BIER shim layer adds the element(s) corresponding to this “hole” in the list of lost
packets, L. Each element in L is identified by the sequence number s of the corresponding lost
packet, and is associated with a timer T [s], and a NACK count N [s].

For each element of L, a NACK is sent towards the source. The NACK contains a reliable BIER
header wherein the included bitstring indicates the bit of the client sending the NACK3, and the
sequence number corresponding to the lost packet. Then, the NACK count is incremented, and a
new timer for this packet is set to expire after ∆tretry (a configurable retry delay). Upon timer
expiration, if no retransmission has been received, and if the NACK count is below a configurable
limit ℓ, another NACK is sent and the process is restarted. When the retransmission count reaches
ℓ, it is assumed that the source is not able to offer timely retransmission (for instance, due to
congestion on the path), and the destination gives up trying to request. This achieves a “poor-
man’s congestion control”, by limiting the number of possible retransmission of a multicast data
packet.

2The successor of the last data packet is a special end-of-connection packet. To ease readability, Algorithms 5
and 6 assume an infinite stream.

3One reason for including a bitstring is, that this allows the originator to create the and BIER retransmit

bitstring by a simple OR operation of received NACKs.
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Algorithm 6 Reliable BIER Destination Operation

∆tretry ← NACK retransmission delay
ℓ← NACK retransmission limit
F ← unique flow identifier
L← {} ⊲ seqnum of lost packets

T ← {} ⊲ NACK transmit timers for lost packets

N ← {} ⊲ number of times a NACK has been sent

C ← {} ⊲ recovered packets pending for app

n← 0 ⊲ next expected seqnum

for each incoming packet p with flow F , seq S do

if S = n then ⊲ received in-order packet

L← L \ {S}, delete T [S], N [S] ⊲ un-schedule NACK

transmit p to application
n← n+ 1

else if S > n then ⊲ received out-of-order packet

if S /∈ C then ⊲ cache packet and un-schedule NACK

C[S]← p
L← L \ {S}, delete T [S], N [S]

end if

⊲ schedule NACK for packets between n and S
for seq from n to S with seq /∈ L ∪ C do

L← L ∪ {seq}, T [seq]← Tnow, N [seq]← 0
end for

end if

⊲ send appropriate NACKs

for seq ∈ L with T [seq] ≤ Tnow do

if N [seq] < ℓ then

send NACK with flow F , seq seq
T [seq]← Tnow +∆tretry, N [seq]← N [seq] + 1

else ⊲ abort trying to recover this packet

L← L \ {seq}, delete T [seq], N [seq]
C[seq]← {} ⊲ put a dummy packet in the cache

end if

end for

⊲ send pending recovered packets to application

while n ∈ C do

p← C[n], delete C[n]
transmit p to application
n← n+ 1

end while

end for
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Figure 5.3 – Data-center simulation topology

5.2.3 Parameter Discussion

The value of ∆tagg directly influences the global behavior of reliable BIER:

• when ∆tagg = 0, no aggregation is performed, and the protocol degenerates to individual,
unicast-based, retransmissions;

• when ∆tagg > 0, aggregation is enabled: the greater ∆tagg, the greater the probability of
aggregating retransmissions, but at the cost of a greater delay for recovery;

• when ∆tagg = RTTmax −RTTmin, maximum aggregation is enabled; higher values of ∆tagg
will not provide further benefit.

Determination of the value of ∆tagg thus requires taking into account RTT variations and error
probability along the different paths, as well as the sensitivity of the application to delay: it thus
corresponds to a policy decision. Furthermore, to make sure that each destination sends at most
one NACK for each multicast data packet (re)transmission failure, ∆tretry should be greater than
∆tagg +RTTmax.

5.3 Data-Center Simulations

Regardless of the underlying network topology, content delivery with BIER from a given source
will follow (but not construct) a shortest-path tree. Thus for this first set of simulations, reliable
BIER is tested on a simple tree-topology modeling a data-center, depicted in figure 5.3: a core
router, connected to two aggregation routers – each of which is connected to two Top-of-Rack
routers (ToR), and with each rack hosting 10 machines.

The purpose of the set of tests in this section is to examine if the intuition introduced in
section 5.1, and depicted in figure 5.1, holds: that using BIER (rather than multicast or unicast)
for retransmissions can yield a measurable and significant diminution of the traffic footprint.

To this end, three different scenarios are constructed around the same physical topology de-
picted in figure 5.3. These scenarios serve to explore how reliable BIER performs both when losses
are spatially located and when they are not, specifically:

Uncorrelated localized losses, where background traffic is present inside the leftmost rack, i.e.,
where both the source and destination of the background traffic are members of the leftmost
rack, saturating individual links between the ToR switch and the machines in the rack, and
thus affecting these machines individually – but with the rest of the data-center unaffected.
This scenario is studied in section 5.3.2.

Correlated localized losses, where background traffic is present inside the two leftmost racks,
i.e., where source and destination are members of the two leftmost racks. This saturates
the incoming links to the two leftmost ToR switches, and thus will affect destinations on all
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machines within a rack together – again, with the rest of the data-center unaffected. This
scenario is studied in section 5.3.3.

Bursty, non-localized losses, where losses are not related to localized background traffic, but
are produced by a loss model in each individual link. This scenario is studied in section 5.3.4.

5.3.1 Simulation Parameters and Setup

The BIER shim layer described in section 5.2 has been implemented in ns3 [147], with the
bit number 7→ IP-address mapping assumed a priori available in all routers, as discussed in sec-
tion 1.2.2. UDP is used as transport protocol, and BIER and reliable BIER headers are imple-
mented as IPv6 extension headers. The reliable BIER parameters from section 5.2 are chosen as
follows: ∆tagg = 7 ms (NACK aggregation delay), ∆tretry = 15 ms (NACK retransmission timer),
and ℓ = 3 (retransmission limit). All links are homogeneous, point-to-point, with 1 Gbps capacity,
with an MTU of 1500 octets and a propagation delay of 1 µs. Network interfaces all have tail-
drop queues of size 512 packets. The links themselves are lossless – except for the simulations in
section 5.3.4, which considers link-losses according to a Gilbert-Elliot loss model [148]. For these
simulations, the multicast data packet source is attached to the core router, which generates a
constant bit-rate reliable BIER flow of 500 Mbps. All 40 machines are destinations for this flow.

This scenario can be considered to represent e.g., broadcasting of a live media, where a constant
transmission bitrate has to be sustained, and where a retransmitted multicast data packet is of no
value if received “too late”. Thus, some packets may not be received by all destinations, and the
ratio of packets successfully received after retransmissions (the delivery ratio) will be a metric of
interest – as will the network load of the different links in the network, as well as the sum of traffic
over all links in the network (the traffic footprint).

When unicast background traffic is introduced in the network (for the simulations in sec-
tion 5.3.2 and 5.3.3), it takes the form of 19 UDP flows of a constant bit-rate of 500 Mbps. Each
flow has a randomly selected source and destination. These flows are injected into the network in
a staggered fashion, starting every 200 ms, and each lasting until the end of the simulation. The
simulations in section 5.3.2 and 5.3.3 differ in the domain from which the (source, destination)
pairs are randomly chosen.

As a reference, reliable BIER (i.e., using BIER for retransmissions, as per this chapter) is
compared with multicast (as in e.g., [128]) and unicast (as in e.g., [129]) retransmissions of NACKed
multicast data packets.

5.3.2 Uncorrelated, Localized Losses

For this set of simulations, UDP background flows are introduced with sources and destinations
both within the leftmost rack (figure 5.3) as described in section 5.3.1. This will saturate some
of the links between the ToR router and the individual machines, leading to packet losses in the
“downwards” interfaces of the leftmost ToR router. BIER aggregation will thus only happen when,
by chance, two or more clients detect a packet loss (and thus generate NACKs) at the same time.

Figure 5.4 depicts the results of a 4-second simulation run, specifically the usage of the two core
links, the delivery ratio, and the distribution of the number of clients in BIER retransmissions. A
first observation from figure 5.4b is that with multicast retransmissions, the rightmost aggregation
link carries unnecessary traffic, unlike unicast and BIER retransmissions. It can also be observed
that multicast retransmissions saturate the core links faster than the two other mechanisms: this
is because excess retransmissions produce additional congestion, leading to additional losses of
original transmissions, in turn leading to additional retransmissions.

Comparing with unicast retransmissions, the use of BIER retransmissions further minimizes the
traffic footprint: even with uncorrelated losses, retransmissions are aggregated when several clients
do not receive the same packet when using BIER. This is illustrated in figure 5.4d, which depicts
the Cumulative Distribution Function (CDF) of the number of simultaneous clients to which a
BIER retransmission is performed: ≈ 10% of BIER retransmissions are destined for multiple (≥ 2)
destinations, and thus benefit from aggregation. This allows a further reduction of link usage, as
depicted in figure 5.4b.

A conclusion to draw from these simulations is that in case of localized losses, BIER and
unicast retransmissions are preferable to multicast retransmissions – due to the latter incurring
unnecessary traffic on links in paths unaffected by losses. Another conclusion is that when multiple
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Figure 5.4 – Uncorrelated localized losses experiment. BIER retransmits vs unicast and multicast re-
transmits.

destinations do not receive a given multicast data packet, BIER retransmissions allow aggregation
– an advantage over unicast retransmissions.

5.3.3 Correlated, Localized Losses

For this set of simulations, UDP background flows are introduced with sources and destinations
within the two leftmost racks (figure 5.3) as described in section 5.3.1. This will, again, saturate
some of the links – this time, in addition to between the individual machines and the ToR routers,
also between the ToR routers and aggregation routers. A loss on one of these links will affect all
the destinations within a rack.

Figure 5.5 depicts the results of a 4-second simulation. For the same reasons as in section 5.3.2,
multicast retransmissions cause unnecessary traffic on the right “half” of the data-center (see
figure 5.3) – and cause earlier saturation on the left core link.

A single lost multicast data packet will, in this scenario, typically fail to be received by several
destinations, therefore unicast retransmissions will generate a larger traffic footprint as compared
to BIER retransmissions. With a link capacity of 1 Gbps and a multicast flow of 0.5 Gbps,
the link between the source and the core router can sustain the unicast retransmission load only
when each multicast data packet is, on average, retransmitted no more than once. Beyond that, the
link becomes saturated with retransmissions, thus preventing “legitimate” original transmissions to
succeed. This explains why unicast recovery incurs a lower delivery ratio, as depicted in figure 5.5c.
This is also why the link usage on the first core link is lower for unicast retransmissions than for
BIER retransmissions, as depicted in figure 5.5a.

The distribution of the number of simultaneous clients to which a multicast data packet is
retransmitted is depicted in figure 5.5d: ≈ 46% of BIER retransmissions are destined for multiple
destinations, and thus benefit from aggregation.

5.3.4 Unlocalized, Bursty Losses

The simulations in sections 5.3.2 and 5.3.3 illustrate the benefits of BIER retransmissions when
losses are spatially localized. Instead of creating background UDP flows, this section assumes
uncontrolled, exogenous congestion in the data center – modelled by a Gilbert-Elliott loss model
[148] on all links. This model is used to model bursty transmissions, and [149] shows that it
accurately describes packet losses in the Internet. In sum, the Gilbert-Elliott loss model prescribes
that a link can be in either a good or bad state. In good state, the link is ideal (no losses), whereas
in bad state, the probability of a transmission to be successful (i.e., to not be lost) is h. For each
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Figure 5.5 – Correlated localized losses experiment. BIER retransmits vs unicast and multicast retrans-
mits.

packet to be transmitted over a link, the state of the link may change: from bad to good with a
probability of r, and from good to bad with a probability p.

For the purpose of the simulations in this section, the success probability in the bad state is
set to h = 0.5, and the transition probability from bad to good to r = 0.01 (i.e., the expected loss
burst duration is 100 packets). The transition probability from good to bad, p, is set so that the
average packet loss ratio is α, according to equation (4) in [149]: p = rα

1−h−α = 0.01α
0.5−α . In order

to quantify the sensitivity of the system to different congestion levels, 19 simulations are run, for
α ∈ {0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.1}.

Figure 5.6 depicts the simulation results. A stability limit (α = 6% for BIER and multicast,
α = 0.9% for unicast) can be observed in figure 5.6a. Above this limit, retransmissions compete
with original transmissions over the link between the source and the core router, causing some of
these original transmissions to be lost, thus requiring additional retransmissions. This then causes
the delivery ratio to deteriorate, as depicted in figure 5.6c. Thus for this stability metric, reliable
BIER shows superior results as compared to unicast retransmissions, while behaving similarly as
compared to multicast retransmissions. Figure 5.6b shows the aggregate traffic (the sum of traffic
induced by transmissions and retransmissions over all links) for each of the values of α. While
unicast retransmissions (in the stability zone) behave slightly worse than BIER retransmissions,
multicast retransmissions incur a substantial traffic footprint (of approximately 1.7× that of BIER
retransmissions, for α = 6%).

A conclusion to draw from these simulations is that, when losses are unlocalized and bursty,
BIER retransmissions are vastly preferable to multicast retransmissions, in terms of global traffic
footprint and also vastly preferable to unicast retransmissions, in terms of avoiding saturation of
individual links.

Finally, the CDF of the number of simultaneous clients to which a multicast data packet is
retransmitted is depicted in figure 5.6d, which shows that when α ≥ 6%, more than 50% of BIER
retransmissions are destined for multiple destinations, and thus benefit from aggregation.

5.3.5 Influence of the Aggregation Timer

As described in section 5.2.3, increasing the aggregation timer ∆tagg (i.e., the amount of time
during which the source collects NACKs for a given packet before retransmitting) directly reduces
the induced network traffic (since aggregating more NACKs means that the corresponding retrans-
mission is sent to more clients), at the cost of packets being delivered later to the application. In
order to quantify this phenomenon, an experiment using the scenario of section 5.3.4 is conducted.
For two target loss probabilities α = 1% and α = 0.8% (slightly above and below the stability limit
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Figure 5.6 – Unlocalized bursty losses experiments. 19 simulations with different loss probabilities.

observed in figure 5.6a, respectively), different values for the parameter ∆tagg are used, ranging
from 25 µs to 10 ms.

Figure 5.7a depicts the usage of the link between the source and the core router, averaged
above the duration of the simulation, with α = 1%. It is interesting to observe that enabling
NACK aggregation (i.e., making ∆tagg 6= 0) causes a substantial improvement in performance. In
particular, the use of any non-zero NACK aggregation delay leads to a significant benefit in terms
of link usage: the smallest non-zero explored value (∆tagg = 25 µs) makes the link usage drop from
1 Gbps (with ∆tagg = 0) to 645 Mbps. Further increases of the aggregation delay lead to minor
reductions of link usage (e.g., from 645 Mbps for ∆tagg = 25 µs, to 615 Mbps for ∆tagg = 10 ms),
at the cost of linearly increasing the delay of retransmitted packets by ∆tagg. Figure 5.7b depicts
the results for α = 0.8%: a similar pattern can be observed, with a lower amount of traffic for
unicast retransmissions – due to α being below the stability limit.

5.4 ISP Topology Simulations

Sections 5.3.2, 5.3.3, and 5.3.4 illustrated the benefits of reliable BIER for reducing the traffic
footprint in strict tree topologies such as those from data centers – begging the question of if
these benefits are dependent on these topologies. In order to answer that question, this section
presents simulations of a real topology, specifically that of BT Europe (Aug. 2010) from [150]
(see figure 5.9). Note that while the topology used comes from a real deployment, this simulation
does not claim to reproduce realistic Internet traffic: the goal is to explore the behavior of reliable
BIER.

This topology consists of 24 routers, connected by 1 Gbps links. It is assumed that the unicast
routing protocol has converged and each router has perfect shortest paths to all other routers.
For the purpose of this simulation study, the source node is attached to router 17 (in London),
and a destination is attached to each of the other 23 routers. The simulation parameters and
multicast traffic flow parameters are as per section 5.3.1. Background traffic flows are also as per
section 5.3.1, noting that router 17 is never chosen as source or destination for a background flow.

Figure 5.8a depicts the link usage between the source and router 17 – revealing that unicast
retransmissions rapidly saturate the link, and that multicast retransmissions saturate the link
faster than BIER retransmissions. Figure 5.8b depicts the link usage of the link between router 17
(to which the source is attached) and router 5 (one of its directly adjacent peer routers), noting
that it is up to twice as high for multicast retransmissions as it is for both BIER retransmissions
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Figure 5.7 – Influence of ∆tagg: link usage between the source and the core router.

and for unicast retransmissions. The link load for unicast retransmissions on this link is lower
than for reliable BIER. The reason for this is that, as unicast retransmissions already saturated
the link between the source and router 17 (figure 5.8a), fewer unicast retransmissions make it onto
the link between router 17 and router 5 (figure 5.8b), causing an overall lower data delivery ratio
when using unicast retransmissions. This is depicted in figure 5.8c, which also indicates a higher
data delivery ratio for BIER retransmissions than for multicast retransmissions.

The distribution of the number of simultaneous clients to which a multicast data packet is
retransmitted is depicted in figure 5.8d: ≈ 71% of BIER retransmissions are destined for multiple
destinations, and thus benefit from aggregation.

The conclusion to draw from these simulations is that the results obtained with a data-center
topology (section 5.3) also can be valid for other topologies.

5.5 Reliable BIER Performance Analysis

The simulations in sections 5.3 and 5.4 illustrate the performance benefits of BIER-retransmissions
for reliable multicast, both when faced with (i) rare, isolated losses, and with (ii) correlated, fre-
quent losses in traffic-intensive environments. Specifically, reliable BIER was observed to result in
a substantially lower traffic footprint in the simulated scenarios, with equivalent or better multicast
data packet delivery ratios than when using multicast and unicast retransmissions.

This section aims at generalizing these observations by way of formulating an analytical model
of arbitrary tree topologies, and of using this model to analytically quantify the number of suc-
cessful and failed transmissions4 necessary for a reliable multicast operation to succeed (i.e., for
all destinations to have received a copy of a multicast data packet). Section 5.5.2 derives an exact
expression of this as MB

[i], for reliable BIER – and for comparison, Mm
[i] and Mu

[i] for when using
multicast and unicast retransmissions, respectively.

These exact expressions, however, become mathematically intractable for large trees, thus sec-
tion 5.5.3 develops a first-order approximation of the average traffic footprints of reliable multicast
using BIER, multicast, and unicast retransmissions, respectively.

4Colloquially speaking, to count the blue arrows in figure 5.1.



5.5. RELIABLE BIER PERFORMANCE ANALYSIS 61

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 0  0.5  1  1.5  2  2.5  3  3.5  4

L
in

k
 u

s
a

g
e

 (
b

/s
)

Time (s)

BIER retransmissions, source to router 17 link
Unicast retransmissions, source to router 17 link

Multicast retransmissions, source to router 17 link

(a) Link usage, between the source and router 17 (London).
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(b) Link usage, between router 17 (London) and router 5.
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Figure 5.8 – ISP topology experiment. BIER retransmits vs unicast and multicast retransmits.

Figure 5.9 – Network topology (picture from [150]).

5.5.1 Model, Assumptions and Definitions

Network links have an associated packet loss probability5 α ∈ [0, 1]. As illustrated in section 5.1,
multicast transmissions and retransmissions (regardless of if BIER, multicast, or unicast retrans-
missions) span a tree, rooted in the source. For describing these trees, the following notation is
introduced: routers and destinations are indiscriminately termed node, and each node is uniquely
labeled with the path from the root of the tree to it6; [[i], j] denotes the j-th child of node [i],
and the term “the subtree [i]” refers to the subtree which is rooted in node [i]. Finally, the set of
children of [i] is denoted c([i]): c([i]) = {[[i], 1], [[i], 2], . . .}

This analysis assumes retransmissions by the source until all destinations have received a copy of
the multicast data packet, and that the source collects all generated NACKs before retransmitting a
packet (i.e., ℓ =∞, no NACKs are lost, ∆tagg ≥ RTTmax−RTTmin, ∆tretry ≥ ∆tagg+RTTmax).
It quantifies, under these assumptions, (1) the number of retransmissions of a multicast data packet
that are made by the source, and (2) the total number of transmissions in the network, until all
clients have received (at least) one copy of the multicast data packet.

5For lossless links, operating below capacity and with finite buffers, packet losses are due to buffer overflow –
thus while a link may be lossless, an interface may still experience packet losses.

6The root is labelled [1]; the first child of the root is labeled [[1], 1], its second child [[1], 2]; the first child of
[[1], 1] is [[[1], 1], 1]; etc.
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Figure 5.10 – Notation

Definitions:

Given a node [i] and its child [[i], j], and with reference to figure 5.10:

• T[[i],j]: is the number of attempts from node [[i], j], i.e., number of times that [[i], j] must
transmit copies of a multicast data packet to its children so as to ensure that all destinations in
its subtree receive the multicast data packet. If [[i], j] is a leaf, then by convention T[[i],j] = 1.

• X[i]→j : is the number of transmissions made by [i] over the link ([i], [[i], j]), needed to ensure
that node [[i], j] receives the T[[i],j] copies of the multicast data packet.

• M⋆
[i]: is the number of packets transmitted inside a subtree [i] to ensure that all destinations

receive a copy, where ⋆ indicates the considered variant (B for BIER, m for multicast, u for
unicast). If [i] is a leaf, then by convention M⋆

[i] = 0.

The number of attempts by [i] is the worst of the number of transmissions on all links ([i], [[i], j]):

T[i] = max
[[i],j]∈c([i])

X[i]→j (5.1)

5.5.2 Computation of T[i], X[i]→j, and M
⋆
[i]

Each node [[i], j] needs to receive T[[i],j] copies of the multicast data packet from its parent, [i].
For each of these, the number of transmissions over the link ([i], [[i], j]) until the copy is successfully
received at [[i], j] is geometrically distributed with success probability (1− α), which leads to the
following proposition:

Proposition 5.1. The total number of transmissions over the link ([i], [[i], j]) follows a negative
binomial distribution with (random) parameter T[[i],j]. For x ≥ k ≥ 1:

P[X[i]→j = x|T[[i],j] = k] =

(

x− 1

k − 1

)

αx−k(1− α)k (5.2)

and the number of attempts from node [i], T[i] is:

P[T[i] = k] =
∏

[[i],j]∈c([i])

P[X[i]→j ≤ k]−
∏

[[i],j]∈c([i])

P[X[i]→j ≤ k − 1] (5.3)

Equations (5.2) and (5.3) allow computing the probability density function (PDF) for X[i]→j

and T[i] recursively from the leaves towards the root, using the convention that T[i] = 1 for a leaf.
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(a) First attempt (b) Second attempt

(c) Third attempt

T=3

T=2T=2

(d) Total number of attempts and
transmissions

Figure 5.11 – Reliable BIER examplified – solid blue arrows represent successful transmissions, dashed
blue arrows represent unsuccessful transmissions, and dashed black arrows represent NACKs. A NACK
is sent by two nodes (a) upon receipt of a subsequent packet in the stream. After retransmission (b), the
last node still has not received a copy of the packet, and sends a second NACK upon timeout of ∆tretry
(Algorithm 6). The third attempt (c) ensures that delivery is successful. Figure (d) shows the total number
of attempts T[i] at each node [i], and total transmissions X[i]→j at each link [i]→ [[i], j]. The total number
of packets sent in the tree (the sum of all X[i]→j) is M

B
[i] = 11.

BIER retransmissions: MB
[i]

When using BIER retransmissions, MB
[i] is the sum of the transmissions on each link ([i], [[i], j])

and the packets transmitted in each subtree [[i], j], i.e., :

MB
[i] =

∑

[[i],j]∈c([i])

(X[i]→j +MB
[[i],j]) (5.4)

Figure 5.11 provides a detailed example of a BIER reliable transmission, with the corresponding
values for T[i], X[i]→j and MB

[i] displayed in Fig. 5.11d.

Multicast retransmissions: Mm
[i]

The number of multicast data packets sent over a network with multicast retransmissions can
be obtained by adapting the previously presented model (section 5.5.2). Consider the transmission
from a node [i] to a node [[i], j]: transmitted packets can be classified into two categories: (i)
packets sent until the subtree [[i], j] is covered, and (ii) packets flooded by [i] inside the subtree
[[i], j] after it has been covered. The latter packets come from retransmissions from the source [i]
that are due to other subtrees [[i], k] having not yet been covered. Let U[i]→[[i],j] be the number of
packets that fall into the second category. The number of floods is T[i] −X[i]→j (i.e., the number
of times [i] transmits after [[i], j] has already received enough packets): index these floods with

f ∈ [1, T[i] − X[i]→j ]. For each of these floods, let Y f
[i]→j be a Bernoulli variable of parameter

(1 − α) representing the success of transmission on the link [i] → [[i], j], and F f
[[i],j] be a variable

representing the number of packets flooded in the subtree [[i], j]. The number of unnecessary
packets is then, for each of these floods, one packet (from [i] to [[i], j]) plus, if the transmission

succeeded (i.e., if Y f
[i]→j = 1), the number of packets F f

[[i],j] resulting from a multicast flood sourced

at [[i], j]:

U[i]→[[i],j] =

T[i]−X[i]→j
∑

f=1

(1 + Y f
[i]→jF

f
[[i],j]) (5.5)
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(a) First attempt (b) Second attempt

(c) Third attempt

T=3,M=16

T=2,M=4T=2,M=4

(d) Total number of attempts and
transmissions

Figure 5.12 – Example of multicast reliable transmission. In addition to the conventions of figure 5.11,
green arrows represent unnecessary retransmissions. In the second attempt (b), node [[1], 1] floods one
unnecessary packet. In the third attempt (c), the root floods three unnecessary packets, and node [[1], 2]
floods one unnecessary packet. Figure (d) shows the total number of attempts T[i] at each node [i], total
transmissions X[i]→j at each link [i] → [[i], j], and the total number of unnecessary packets U[i]→[[i],j]

flooded by each node [i] in the subtree [[i], j]. The total number of packets sent in the tree (the sum of all
X[i]→j and U[i]→[[i],j]) is M

m
[1] = 16.

where the mean number of packets sent in a multicast flood from [i], E[F[j]], can be recursively
computed as follows (with E[F[j]] = 0 for every leaf [j]):

E[F[i]] =
∑

[[i],j]∈c([i])

(1 + (1− α)E[F[[i],j]]) (5.6)

From this, the total number of packets sent in a subtree [i] until all of its destinations receive
a copy, Mm

[i], can be computed recursively. It corresponds, for each child [[i], j], to the number of

transmissions over the link [i] → [[i], j] required by [[i], j], plus the number of packets sent inside
[[i], j] so as to cover all destinations, plus the unnecessary multicast packets originating from [i]:

Mm
[i] =

∑

[[i],j]∈c([i])

[

X[i]→j +Mm
[[i],j] + U[i]→[[i],j]

]

(5.7)

Proposition 5.2 indicates a simple way to compute the average traffic footprint for multicast
retransmissions, using T[i] and F[i].

Proposition 5.2. Let [i] be a node in the tree. With multicast retransmissions, the mean number
of packets sent until all destinations in [i] obtain a copy can be computed as such:

E[Mm

[i] ] = E[T[i]]E[F[i]] (5.8)

Proof. by induction. If [i] is a leaf, Mm
[i] = 0 and F[i] = 0, hence the result holds. Otherwise, let

[i] be a node that is not a leaf, and assume that the result holds for all children of [i]. Then, using
equation (5.7), and Wald’s equation to expand E[U[i]→[[i],j]] from equation (5.5), it follows that:
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E[Mm
[i]] =

∑

[[i],j]∈c([i])

[

E[X[i]→j ] +E[Mm
[[i],j]] +E[T[i] −X[i]→j ](1 + (1− α)E[F[[i],j]])

]

=
∑

[[i],j]∈c([i])

[

E[X[i]→j ] +E[T[[i],j]]E[F[[i],j]]

+E[T[i] −X[i]→j ](1 + (1− α)E[F[[i],j]])
]

=
∑

[[i],j]∈c([i])

[

E[X[i]→j ] + (1− α)E[X[i]→j ]E[F[[i],j]]

+E[T[i] −X[i]→j ](1 + (1− α)E[F[[i],j]])
]

=
∑

[[i],j]∈c([i])

E[T[i]](1 + (1− α)E[F[[i],j]])

= E[T[i]]E[F[i]]

where the equality E[X[i]→j ] =
E[T[[i],j]]

1−α
and equation (5.6) were used.

Figure 5.12 provides a detailed example of multicast reliable transmission, with corresponding
values for the variables T[i], X[i]→j , U[i]→[[i],j], and Mm

[i].

Unicast retransmissions: Mu
[i]

With unicast retransmissions, losses experienced by each destination are treated individually
by the source. Given the loss of a multicast data packet (sent by the source [1]) at a destination
[c], connected to the source in d([c]) hops, the number of retransmissions from the source before
successful delivery of the packet to [c] is a random variable, R[1]→[c], whose mean is described in
proposition 5.3.

Proposition 5.3. The mean value of R[1]→[c] is:

E[R[1]→[c]] =
1− (1− α)d([c])

α(1− α)d([c])
(5.9)

Proof. Let [c] be a destination at depth d([c]); for simplicity, write d = d([c]). The unicast retrans-
mission will succeed if the packet successfully traverses d successive links: the probability of a unicast
success from the source to [c] is therefore (1 − α)d. Let Z[1]→[c] represent the number of trials before
(and not counting) the unicast success. Z[1]→[c] is geometrically distributed with parameter (1− α)d:

P[Z[1]→[c] = k] = (1− α)d[1− (1− α)d]k, ∀k ≥ 0

E[Z[1]→[c]] =
1− (1− α)d

(1− α)d

For each of these first Z[1]→[c] (unsuccessful) attempts, N[1]→[c] unicast packets will be sent through the
chain of links from [1] to [c], where N[1]→[c] is distributed as:

P[N[1]→[c] = k] =
(1− α)k−1α

1− (1− α)d
, ∀1 ≤ k ≤ d

E[N[1]→[c]] =
1− αd(1− α)d − (1− α)d

α(1− (1− α)d)

The last (successful) unicast attempt will generate d packets (one per link). Hence, the total number of
unicast packets sent until the destination [c] receives a copy, R[1]→[c], is:

E[R[1]→[c]] = E[Z[1]→[c]]E[N[1]→[c]] + d =
1− (1− α)d

α(1− α)d

as desired.
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Figure 5.13 – Number of packets MB
[1] (BIER retransmissions), Mm

[1] (multicast retransmissions) and Mu
[1]

(unicast retransmissions) transmitted in the binary tree of figure 5.1 until all destinations receive a copy.

The previous proposition allows to compute the total number of multicast data packets sent
from the source with the unicast reliability mechanism, Mu

[1]. This variable corresponds to the
multicast data packets sent in the first multicast flood, plus, for each destination that did not
receive a copy of the multicast data packet, the number of unicast retransmissions needed until
the copy is successfully received. Proposition 5.4 expresses Mu

[1] and provides a closed expression

for its mean, E[Mu
[1]].

Proposition 5.4. Let C be the set of destinations, and let F[1] be the (random) set of destinations
that have successfully received a copy after the first multicast flood by [1]. Then, the number of
multicast data packets sent from the source, under unicast retransmissions, until each destination
has received a copy is:

Mu

[1] = F[1] +
∑

[c]∈C

1{[c]/∈F[1]}R[1]→[c] (5.10)

and its mean is:

E[Mu

[1]] = E[F[1]] +
∑

[c]∈C

(1− (1− α)d([c]))2

α(1− α)d([c])
(5.11)

Proof. From the definition of F[1], equation (5.10) holds. The mean number of multicast data packets
sent in the network is therefore:

E[Mu
[1]] = E[F[1]] +

∑

[c]∈C

P[[c] /∈ F[1]]E[R[1]→[c]]

And since P[[c] /∈ F[1]] = 1− (1− α)d([c]), the result in (5.11) is obtained by using equation (5.9).

Computational Example

For trees of small height, it is possible to recursively derive the average number of transmissions
needed in the network in order to deliver a multicast data packet to all destinations, in an exact
manner, for BIER reliability (proposition 5.1 and equation (5.4)), multicast reliability (proposi-
tion 5.2) or unicast reliability (proposition 5.4). As an example, figure 5.13 reports the results of
this computation, for a binary tree of height 2 (as in figure 5.1): as expected, reliable BIER incurs
the lowest overhead.

5.5.3 Total Traffic Approximation

Directly computing the traffic footprint is intractable when the depth of the tree is important.
Therefore, this section provides a first-order approximation of the expected number of packets
E[M⋆

[i]] transmitted in the network before all destinations receive a copy, under the assumption

that losses are rare (i.e., α → 0, as in [143]), for arbitrary trees and for each retransmission
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mechanism (reliable BIER, unicast retransmissions, multicast retransmissions). This generalizes
the model provided in [143], which provides a first-order approximation of the expected number of
source-transmissions E[T[i]], for multicast retransmissions.

For a link l of the tree, d(l) is the depth of l (d(l) = 1 for a link rooted at the source); L is the
total number of links in the tree, andD is the average depth of a links in the tree: D = 1

L

∑

l d(l). C
is the number of destinations, and ∆ is the average squared depth of a destination: ∆ = 1

C

∑

c d(c)
2.

Given these parameters, Theorem 5.1 describes first-order (for α) approximations of the number
of transmissions in the network:

Theorem 5.1. The average number of multicast data packets that need to be sent in the tree until
all destinations have received a copy are, for reliable BIER (MB

[1]), for multicast retransmissions

(Mm

[1]) and for unicast retransmissions (Mu

[1]), given by the following approximations when α→ 0:











E[MB

[1]] = L+ LDα+O(α2)

E[Mm

[1]] = L+ [L2 − L(D − 1)]α+O(α2)

E[Mu

[1]] = L+ [C∆− L(D − 1)]α+O(α2)

(5.12)

Proof. The proof is deferred to section 5.5.5.

When there are no losses (α = 0), the transmission of one multicast data packet yields L pack-
ets in the tree (one per link), whichever retransmission mechanism (BIER, multicast or unicast) is
used. In addition to these L packets, with BIER retransmissions, the traffic is approximately LDα
packets, as compared to approximately L2α packets for multicast retransmissions and approxi-
mately C∆α for unicast retransmissions (Theorem 5.1). The traffic due to unicast or multicast
retransmissions can thus be orders of magnitudes bigger than the corresponding BIER traffic, if
the number of links and/or the depth of destinations is important.

When the tree is regular (i.e., each node has the same number of children), it is possible to
further simplify these expressions. Let c be the “arity” of the tree, defined as the number of
children per node (for instance, a binary tree has c = 2), and h be the height of the tree (where a
tree of height 0 is defined to have a single node). With these notations, it is possible to derive the
following approximations (when the arity c is fixed) for L→∞:











limα→0
1
αE[MB

[1] − L] = Θ(L logL)

limα→0
1
αE[Mu

[1] − L] = Θ(L log2 L)

limα→0
1
αE[Mm

[1] − L] = Θ(L2)

(5.13)

This provides a hierarchy between the three studied mechanisms, and shows that BIER retransmis-
sions reduce the traffic footprint from a quadratic behavior in the number of links (with multicast
retransmissions) to a log-linear behavior.

Proof. The number of links in the tree can be expressed as L =
∑h

k=1 c
k = ch+1−c

c−1
. This allows

expressing h as a function of L:

h =
1

log c
log

(

1 + L
c− 1

c

)

=
logL

log c
+O(1)

Then, the average depths of links in the tree is:

D =
1

L

h∑

k=1

kck =
c− 1

ch+1 − c
× hch+2 − (h+ 1)ch+1 + c

(c− 1)2

= h− 1

c− 1
+

h

ch − 1
= h− 1

c− 1
+

c

c− 1

h

L
︸ ︷︷ ︸

O(1)

=
logL

log c
+O(1)

which yields LD = Θ(L logL), as desired to obtain the result for BIER retransmissions.
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Figure 5.14 – Number of packets MB
[1] (BIER retransmissions), Mm

[1] (multicast retransmissions) and Mu
[1]

(unicast retransmissions) transmitted in the tree of figure 5.3 until all destinations receive a copy. Solid
lines represent exact values (obtained by simulation), dotted lines represent the low-loss approximation
given in theorem 5.1.

k L L×D C BIER unicast multicast

4 28 68 16 68α 104α 744α

6 78 204 54 204α 360α 5958α

8 168 456 128 456α 864α 27936α

10 310 860 250 860α 1700α 95550α

12 516 1452 432 1452α 2952α 265320α

14 798 2268 686 2268α 4704α 635334α

16 1168 3344 1024 3344α 7040α 1362048α

Table 5.1 – Average number of retransmissions per multicast data packet for (k, k/2, k/2) tree topologies
(approximation as per theorem 5.1)

For multicast retransmissions, since LD = Θ(L logL), this yields:

L2 − L(D − 1) = Θ(L2)

as desired.
Finally, for unicast retransmissions, the sum of the squared depths of clients is:

C∆ = h2ch =

(
logL

log c
+O(1)

)2 (

1 + L
c− 1

c

)

=
c− 1

c log2 c
L log2 L+O(L logL) = Θ(L log2 L)

and since LD = Θ(L logL), this finally yields:

C∆− L(D − 1) = Θ(L log2 L)

as desired, thus concluding the proof.

5.5.4 Discussion

The accuracy and relevance of approximations from theorem 5.1 can be assessed against simula-
tions in realistic tree topologies. Two examples are examined in this section: (1) reliable multicast
over a datacenter-like topology as depicted in figure 5.3, and (2) multicast flows over fat-tree-like
topologies (introduced in figure 1.3).

The datacenter-like topology of figure 5.3 yields the parameters L = 47, C = 40, D = 177
47 ,

and ∆ = 16. When α → 0, retransmissions will incur a footprint of 177α packets for BIER,
510α packets for unicast, and 2079α packets for multicast. In order to quantify the quality of the
approximation for this example, the means for MB

[1], M
m
[1] and Mu

[1] have been computed over 106

random samples, for different values of α with 0 ≤ α ≤ 1%. Figure 5.14 depicts the results of these
simulations, as well as the linear approximation from theorem 5.1. For BIER and unicast retrans-
missions, the approximation accurately fits the computed mean. For multicast retransmissions,
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the approximation is within a 6% error margin of the computed value.
For reliable multicast flows over fat-tree-like topologies, the root has k children, each having

k/2 children, each also having k/2 children. For these trees, the parameters become: L = k +
k2

2 + k3

4 , L × D = k + k2 + 3k3

4 , C = k3

4 , ∆ = 9, allowing calculating the approximation of
theorem 5.1. Table 5.1 depicts the approximate retransmission footprint for BIER, multicast
and unicast retransmissions. It can be observed that unicast retransmissions exhibit a footprint
approximately twice as high as BIER retransmissions. The footprint for multicast retransmissions
is at least one order of magnitude higher, and clearly does not scale with the number of clients.

5.5.5 Proof of Theorem 5.1

This section provides a proof of theorem 5.1 and can be skipped at first reading. For this, three
lemmas will be needed. Lemma 5.1 first gives an approximation at order 1 in α of the probabilities of
having one or two transmissions. Then, lemma 5.2 gives a bound on the corresponding probability
distributions, which will be used in lemma 5.3 to show that terms corresponding to three or more
transmissions do not contribute to the terms of order 1 in α.

For an arbitrary node [i] in the tree, let l([i]) be the number of links in the subtree rooted at
[i], with l([i]) = 0 if [i] is a leaf.

Lemma 5.1. Let [i] be a node in the tree, and (if [i] is not a leaf) [[i], j] be an arbitrary child of
[i]. The following approximations hold when α→ 0:

P[X[i]→j = 1] = 1− (1 + l([[i], j]))α+O(α2)

P[X[i]→j = 2] = (1 + l([[i], j]))α+O(α2)

P[T[i] = 1] = 1− l([i])α+O(α2)

P[T[i] = 2] = l([i])α+O(α2)

Proof. by induction over the structure of the tree. If [i] is a leaf, then T[i] = 1 by definition (a client
needs one copy of the packet). Otherwise, let [i] be a node that is not a leaf, and assume that the result
holds for all children of [i]. Let [[i], j] be an arbitrary child of [i]. Equation (5.2) yields:

P[X[i]→j = 1] = P[T[[i],j] = 1](1− α)

= (1− l([[i], j])α+O(α2))(1− α)

= 1− (1 + l([[i], j]))α+O(α2)

P[X[i]→j = 2] = P[T[[i],j] = 1]α(1− α) +P[T[[i],j] = 2](1− α)2

= (1− l([[i], j])α+O(α2))α(1− α) + (l([[i], j])α+O(α2))(1− α)2

= (1 + l([[i], j]))α+O(α2)

Then, the definition of T[i] gives:

P[T[i] = 1] =
∏

[[i],j]∈c([i])

P[X[i]→j = 1]

=
∏

[[i],j]∈c([i])

[
1− (1 + l([[i], j]))α+O(α2)

]

= 1−
∑

[[i],j]∈c([i])

[1 + l([[i], j])]α+O(α2)

= 1− l([i])α+O(α2)

P[T[i] = 2] =
∏

[[i],j]∈c([i])

P[X[i]→j ≤ 2]−
∏

[[i],j]∈c([i])

P[X[i]→j ≤ 1]

=
∏

[[i],j]∈c([i])

(1 +O(α2))−
∏

[[i],j]∈c([i])

[
1− (1 + l([[i], j]))α+O(α2)

]

=
∑

[[i],j]∈c([i])

[1 + l([[i], j])]α+O(α2)



70 CHAPTER 5. RELIABLE MULTICAST WITH BIER

= l([i])α+O(α2)

The following lemma provides a geometric bound on the distribution ofX[i]→j and T[i] variables,
and will be useful to then bound their expectations.

Lemma 5.2. Let [i] be a node in the tree, and (if [i] is not a leaf) [[i], j] be an arbitrary child of
[i]. There exist positive constants A[[i],j], B[[i],j], C[i], D[i] such that, for all α ∈ [0, 1):

P[X[i]→j = x] ≤ A[[i],j](B[[i],j]α)
x−1, ∀x ≥ 1

P[T[i] = k] ≤ C[i](D[i]α)
k−1, ∀k ≥ 1

Proof. by induction over the structure of the tree. If [i] is a leaf, then T[i] = 1 and the result holds
with C[i] = 1, D[i] = 1. Otherwise, assume that [i] is not a leaf, and that the result holds for all children
of [i]. Let [[i], j] be an arbitrary child of [i], and x ≥ 1. Using the induction hypothesis, and the fact
that α ≤ 1:

P[X[i]→j = x] =
x∑

k=1

P[T[[i],j] = k]

(

x− 1

k − 1

)

αx−k(1− α)k

≤
x∑

k=1

C[[i],j](D[[i],j]α)
k−1

(

x− 1

k − 1

)

αx−k(1− α)k

= C[[i],j]α
x−1

x∑

k=1

(D[[i],j])
k−1

(

x− 1

k − 1

)

(1− α)k

= C[[i],j]α
x−1(1− α)[1 +D[[i],j](1− α)]x−1

≤ C[[i],j]α
x−1[1 +D[[i],j]]

x−1

The result for X[i]→j follows, with A[[i],j] = C[[i],j] and B[[i],j] = 1 +D[[i],j].
The result for T[i] remains to be proven. For t ≥ 1:

P[T[i] = k] =
∏

[[i],j]∈c([i])

P[X[i]→j ≤ k]−
∏

[[i],j]∈c([i])

P[X[i]→j < k]

=
∏

[[i],j]∈c([i])

(
P[X[i]→j < k] +P[X[i]→j = k]

)
−

∏

[[i],j]∈c([i])

P[X[i]→j < k]

When developing the first product, a term
∏

[[i],j]∈c([i]) P[X[i]→j < k] appears, which cancels out
with the second product. Remaining terms in the first product are indexed with σ. These terms contain
one or more factors of the form P[X[i]→j = k] where [[i], j] is a child of [i], and other factors of the
form P[X[[i],j′] < k]. Let j(σ) be one of the j such that P[X[[i],j(σ)] = k] appears in the term. An
upper-bound for the other factors is 1, effectively keeping only the contribution of P[X[[i],j(σ)] = k]:

P[T[i] = t] ≤
∑

σ

P[X[[i],j(σ)] = k]× 1

≤
∑

σ

A[[i],j(σ)](B[[i],j(σ)]α)
k−1

The result for T[i] follows, with C[i] =
∑

σ A[[i],j(σ)] and D[i] = maxσ B[[i],j(σ)].

Lemma 5.3 provides an approximation of the expectations of X[i]→j and T[i] variables, at order
1 in α, using lemmas 5.1 and 5.2.
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Lemma 5.3. Let [i] be a node in the tree, and (if [i] is not a leaf) [[i], j] be an arbitrary child of
[i]. The following approximations hold when α→ 0:

E[X[i]→j ] = 1 + (1 + l([[i], j]))α+O(α2)

E[T[i]] = 1 + l([i])α+O(α2)

Proof. First, it will be shown that
∑+∞

x=3 xP[X[i]→j = x] = O(α2). By summing the inequalities in
lemma 5.2, and provided that α is small enough (α < 1/B[[i],j]), it is possible to write:

+∞∑

x=3

xP[X[i]→j = x] ≤ A[[i],j]B
2
[[i],j]

+∞∑

x=0

(x+3)(B[[i],j]α)
xα2

= A[[i],j]B
2
[[i],j]

3− 2B[[i],j]α

(1−B[[i],j]α)2
α2

= O(α2)

Then, using lemma 5.1, E[X[i]→j ] can be approximated as:

E[X[i]→j ] = P[X[i]→j = 1] + 2P[X[i]→j = 2] +

+∞∑

x=3

xP[X[i]→j = x]

= 1− (1 + l([[i], j]))α+ 2(1 + l([[i], j]))α+O(α2)

= (1 + l([[i], j]))α+O(α2)

which concludes the proof for E[X[i]→j ]. The proof for E[T[i]] is similar.

This allows proving theorem 5.1 for BIER reliability. In the following, D([i]) denotes the sum
of depth of links in the tree rooted at [i]: D([i]) =

∑

l∈[i] d(l).

Theorem (Traffic footprint for BIER). Let [i] be a node in the tree. The following approximation
holds when α→ 0:

E[MB

[i]] = l([i]) +D([i])α+O(α2)

Proof. by induction over the structure of the tree. The results holds for leaves, because MB
[i] = l([i]) =

D([i]) = 0 by definition. Otherwise, let [i] be a node that is not a leaf, and assume that the result holds
for the children of [i]. Then:

E[MB
[i]] =

∑

[[i],j]∈c([i])

[

E[X[i]→j ] +E[MB
[[i],j]]

]

=
∑

[[i],j]∈c([i])

[1 + (1 + l([[i], j]))α+ l([[i], j]) +D([[i], j])α+O(α2)]

=




∑

[[i],j]∈c([i])

1 + l([[i], j])



+




∑

[[i],j]∈c([i])

1 + (D([[i], j]) + l([[i], j]))



α+O(α2)

= l([i]) +D([i])α+O(α2)

In the last sum, the first term corresponds to the link from [i] to a child [[i], j], and the second term
corresponds to the sum of depths of all links in the subtree rooted at [[i], j] incremented by 1, i.e., the
depth as counted from the root [i].

A proof of theorem 5.1 for multicast reliability can now be expressed.

Theorem (Traffic footprint for multicast). The following approximation holds when α→ 0:

E[Mm

[1]] = L+
[

L2 − L(D − 1)
]

α+O(α2)
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Proof. Let d(l) be the depth of a link l as seen by the root (a link between the root and one of its
children having depth 1). Using equation (5.6), it is possible to write:

E[F[1]] =
∑

l

(1− α)d(l)−1

=
∑

l

[
1− (d(l)− 1)α+O(α2)

]

= L− L(D − 1)α+O(α2)

Combining proposition 5.2 and lemma 5.3 yields:

E[Mm
[1]] = E[F[1]]E[T[1]]

= (L− L(D − 1)α+O(α2))(1 + Lα+O(α2))

= L+ [L2 − L(D − 1)]α+O(α2)

which concludes the proof.

Finally, the following proves theorem 5.1 for unicast reliability.

Theorem (Traffic footprint for unicast). The following approximation holds when α→ 0:

E[Mu

[1]] = L+ [C∆− L(D − 1)]α+O(α2)

Proof. As in the proof for multicast reliability, the first term in equation (5.11) can be approximated
as: E[F[1]] = L− L(D − 1)α+O(α2). Hence, the whole expectation can be approximated as:

E[Mu
[1]] = E[F[1]] +

∑

[c]∈C

(1− (1− α)d([c]))2

α(1− α)d([c])

= E[F[1]] +
∑

[c]∈C

α2d([c])2 +O(α3)

α

= L− L(D−1)α+O(α2) +
∑

[c]∈C

d([c])2α+O(α2)

= L+ [C∆− L(D − 1)] +O(α2)

concluding the proof.

5.6 Summary of Results

This chapter has proposed a scalable network service offering efficient and reliable multicast.
NACK-based, this network service uses BIER (Bit-Indexed Explicit Replication) for ensuring that
traffic (both original transmissions and retransmissions) are forwarded over a minimal shortest
path tree, requiring maintenance of neither per-flow nor per-group state by intermediate routers:
the source will encode, for each (re)transmission of a multicast data packet, the precise destination
set – be that every member of a given group, or those members having issued a NACK to request
retransmission.

The performance of this network service is compared with “classic” reliable multicast mech-
anisms, where retransmissions are either unicast (to all destinations having sent a NACK) or
multicast to all destinations in a given group (when a NACK for a multicast data packet was
received from any destination).

Simulation studies in both data-center-like and in Internet-like topologies, and when faced with
different loss models, show that the proposed BIER-based reliable multicast network service is able
to achieve reliability, while overcoming the two main shortcomings of these reference mechanisms:
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(i) contrary to multicast reliability, links not concerned by losses are not affected by retransmissions
and (ii) contrary to unicast reliability, links concerned by losses do not unnecessarily carry multiple
copies of the same packets.

Generalizing from the simulation studies, an analytical model is presented, which quantifies
the retransmission footprint incurred by the three mechanisms in any topology – and which shows
that the BIER-based reliable multicast network service incurs a consistently lower overhead.

Results from this chapter have been published in [81].
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Chapter 6

Reliable BIER with Peer Caching

As the size and complexity of Data-Center Networks (DCNs) [151] and Content Distribution
Networks (CDNs) [152] grow, efficient multicast distribution of content becomes increasingly de-
sirable [140,153,154]. Several protocols have been proposed, which offer reliable multicast delivery
services. NORM (Negative-acknowledgement-Oriented Reliable Multicast) [128], among others,
uses sequence numbers in data packets to detect packet losses, and negative acknowledgements
(NACKs) which trigger a multicast transmission of the missing packet to the multicast group.
Other protocols [129,140] use unicast retransmissions to those destinations having missed a packet.

As introduced in section 1.2.2, BIER is a multicast protocol which removes the need for flow-
state in intermediate routers by allowing compact, explicit, source-based specification of the set
of destinations for each multicast packet. In chapter 5, BIER has been extended to offer reliable
multicast delivery of content: using sequence numbers and NACKs for detecting and requesting
retransmissions of missing packets, retransmissions themselves are made, using BIER, to the exact
set of destinations having sent a NACK. This both avoids flooding the whole original multicast
tree (figure 6.1a), and prevents duplicate retransmissions over the same link (as would be the case,
for unicast retransmissions to each destination, figure 6.1b).

As with NORM, retransmissions in reliable BIER are done by the source (figure 6.1c). However,
“local recovery”, where retransmissions are performed by neighbors of destinations having missed
a packet (figure 6.1d), may be preferable to retransmissions from the source [136, 140, 155]. For
instance, this might be desirable for Quality-of-Experience reasons (e.g., when the source and the
destination having lost a packet experience a substantial round-trip delay), or when there are links
towards the source whose usage should be limited (e.g., so as to not overload the source, or for
traffic engineering or economic reasons).

6.1 Statement of Purpose

The purpose of this chapter is to extend the reliable BIER mechanism introduced in chapter 5
to allow a destination having lost a multicast packet to request local retransmission thereof from
local peers (i.e., which are topologically close, and part of the destination set for the multicast flow)
which may have successfully received a copy thereof – before requesting a retransmission from the
source. This is achieved by (i) each destination caching successfully received packets for a small
amount of time, and (ii) destinations detecting a packet loss sending a NACK through an ordered
set of peers (candidates for retransmission) followed by the source, using Segment Routing.

The advantages of this approach are threefold: (i) the use of peer-based recovery reduces the
number of retransmissions from the source, (ii) the use of SR allows a destination to generate
a single NACK for a lost packet, which ultimately and automatically will be forwarded to the
source if no local retransmissions are possible, and (iii) BIER-based retransmissions (from the
source or from any peer) reduce the overall traffic by avoiding both unnecessary duplicate unicast
retransmissions across a link close to the source, and multicast floods across the entire multicast
tree.

75
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Source

(a) Multicast retransmission by
source.

Source

(b) Unicast retransmissions by source.

Source

(c) BIER retransmission
by source.

Source

(d) BIER retransmission
by peer.

Figure 6.1 – Comparison of different reliability mechanisms. In this example, red clients are assumed
to have missed reception of a packet and sent a NACK. With “standard” multicast retransmissions [128],
the source re-floods the whole tree as a result (a). With unicast retransmissions [129], the source will send
multiple copies of the same packet over the same link (b). With BIER retransmissions [81], the source
re-floods only the subset of failing destinations (c). With peer-based BIER retransmissions introduced
in this chapter, the NACKs are sent to a peer that had cached the packet, which then floods the failing
destinations, spanning a smaller tree (d).

6.1.1 Related Work

Work related to BIER and Segment Routing has already been reviewed in section 1.2.1 and
in section 1.2.2. Different approaches to reliable multicast exist, most of which are not based on
BIER, and have been reviewed in section 5.1.1.

Among those approaches, it is noteworthy that some of them use some form of caching, in
intermediary nodes or in destinations. In LBRM [134], a specific node (the log server) is designated
to cache packets from the source. With TMTP [136], destinations are grouped into different
domains, in each of which local recovery can be performed. With RMTP [129], intermediate routers
(designated receivers) can participate in retransmissions; similarly, PGM [139] allows recovery from
designated local repairers. Finally, RDCM [140] uses unicast retransmissions in a backup overlay
in which each peer is responsible for recoveries to at most two destinations.

The differences between these approaches and the mechanism introduced in this chapter are
threefold: (i) routers are not involved in the caching mechanism, leaving this only to the desti-
nations and therefore not requiring expanding the memory capability of the routing hardware;
(ii) retransmissions conducted by peers use BIER and therefore will exclusively target those des-
tinations having missed a packet; and (iii) the use of SR to probe peers for availability of cached
packets allows for flexible and pluggable probing policies.

Information-Centric Networking (ICN)

The proposal in this chapter is built on edge-caching and cooperative content management,
which has some notions in common with Information Centric Networking (ICN). ICN [22] is a
paradigm where content is stored as named data packets, and where users send interest packets
requesting named data packets. As data packets are only identified by names, caching by inter-
mediate routers is possible, and a packet needs only be delivered once per interface, corresponding
to a previously-emitted interest. ICN thus shares properties with reliable multicast protocols, by
enabling recovery of data from nearby routers.

What is proposed in this chapter differs from ICN in that it (i) assumes push-based multicast
applications and (ii) does not rely on routers performing caching, by offloading this task exclusively
to the set of destinations – i.e., requires no extensive modifications to routers nor to applications.

6.1.2 Chapter Outline

The remainder of this chapter is organized as follows. Section 6.2 gives a birds-eye view of the
proposed extension to reliable BIER, and section 6.3 a detailed specification of how BIER is used
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Figure 6.2 – SR-based recovery scenarios: SR-NACK sent by A. A red destination indicates that it is
not able to satisfy the retransmission request, whereas a green destination indicates that it is.
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Figure 6.3 – Example of single- and double-peerstring operation

to construct a reliable multicast framework which can accommodate diverse policies for selecting
peers for local retransmissions. Section 6.4 introduces basic taxonomy and example peer selection
policies. Section 6.5 provides a theoretical analysis and discussion of performance and cost trade-
offs for each of these policies, which are experimentally evaluated by way of network simulations
in sections 6.6-6.8: section 6.6 introduces the characteristics of the simulation environment, and
sections 6.7 and 6.8 describe and discuss the main performance results over both a data center
topology and a real ISP topology. Finally, section 6.9 concludes this chapter.

6.2 Overview: Reliable BIER with Peer Caching

In this chapter, the reliable BIER mechanism introduced in chapter 5 is extended to support
recovery from peers. Rather than sending a NACK directly to the source to request retransmission
of a lost packet, this chapter proposes that a NACK be first sent through an ordered set of peer(s),
each of which might be able to provide a retransmission if they have a cached copy of the lost
packet (figure 6.1d). Retransmission from the source is solicited as a “last resort”. As with reliable
BIER, peers can aggregate NACKs before performing a BIER-based retransmission. This locality
in retransmissions is expected to reduce delays, as well as to reduce the load on the source, and
on its egress links [131,155].
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6.2.1 Segment Routing Recovery

Requesting retransmission from an ordered list of peers, followed by the source, is done by
sending a NACK using Segment Routing (an “SR-NACK”). Each segment will trigger an action
which is: (i) if the peer is unable to perform the retransmission, forward the packet to the next
segment; (ii) if the peer is able to perform the retransmission, stop forwarding the segment and
perform a BIER retransmission (figure 6.1d).

This is illustrated in figure 6.2: in (a) an SR-NACK is received by a peer which is able to
satisfy the retransmission request; in (b) an SR-NACK is received by a peer which is not able to
satisfy the retransmission request, and the next segment is another peer which, then, is able to
satisfy the retransmission request; in (c) neither of the two peers receiving the SR-NACK is able
to satisfy the retransmission request, and the SR-NACK is therefore forwarded to the source of
the multicast packet.

The combined approach thus consists of the source performing an initial BIER transmission
of a multicast packet. Destinations receiving the packet may (in addition to processing it) cache
it for a short amount of time for possible peer-retransmission. A destination detecting a packet
loss (e.g., by receiving a subsequent packet belonging to the same multicast flow) will construct
an SR-NACK, containing a number of peers followed by the source. A peer receiving an SR-
NACK for which it is able to offer a retransmission will behave as if it was the source in reliable
BIER: collect NACKs for this packet for a small amount of time, record the destinations requesting
retransmission, and use BIER for retransmitting the packet to exactly the set of destinations from
which an SR-NACK was received, when the timer expires.

6.2.2 Peer Caching with Peerstrings

This recovery mechanism is agnostic to the manner in which the set of candidate peers is
chosen. If the network operator has instrumented the network in such a way that some peers are
“better” candidates for retransmissions (e.g., they are more likely to have cached packets, they are
behind less costly or less lossy links, etc.), destinations can be administratively configured to send
NACKs to those – with the drawback of requiring instrumentation and configuration. Thus, this
chapter introduces a modification to the BIER forwarding plane, allowing destinations to learn
about candidate peers.

To this end, an additional bitstring is introduced in BIER headers, henceforth denoted a peer-
string. This peerstring is set so as to allow a destination, detecting a packet loss, to identify
potential peers from which a retransmission can be requested. A minima, the peerstring is empty,
which defaults to requesting retransmission from the source, as in reliable BIER. A maxima, the
peerstring contains all destinations (i.e., is a copy of the bitstring as inserted by the source) —
and any peerstring in between these two extremes is valid.

With the goal of encouraging locality in retransmissions, one simple policy is that, for a given
destination, the peerstring contains the set of destinations that share the same parent as itself.
This is illustrated in figure 6.3a: when destination 0 receives a packet, the peerstring has a bit
set for all destinations which have the same parent as itself (i.e., destination 2). When a router
forwards a reliable BIER packet over an interface i, it must, in addition to updating the bitstring
for that interface, update the peerstring – essentially setting the peerstring to the union of the
bitstrings for all other outgoing interfaces.

An extension to this principle is to include two peerstrings in a data packet received by a
destination d: one peerstring indicating destinations with the same parent as d, and a second
peerstring indicating destinations with the same grandparent (but not the same parent) as d – as
illustrated in figure 6.3b. Thus, this affords more flexibility, but at the expense of more per-packet
overhead. This mode of operation will be referred to as the two-peerstrings mode.

6.3 Specification

In the proposed BIER extension, the BIER header defined in [68] is extended to include an
additional bitstring, the peerstring, denoted PS1 and described in section 6.2.2. When BIER
operates in two-peerstrings mode, the header will also include a second peerstring, PS2. This
header is included in all multicast data packets, and is processed by each intermediate router.
Each multicast data packet also includes a reliable BIER header, defined in chapter 5, which
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conveys flow identifiers and sequence numbers, and which allows detecting lost packets in a flow.
This header only carries end-to-end semantics, and is not processed by intermediate BIER routers.

6.3.1 Source Operation

Packet transmission: The source adds a reliable BIER header to each multicast data
packet, containing a flow identifier and a sequence number, as well as a standard BIER header [68]
extended with peerstrings, as described above. The bitstring BS in the BIER header contains the
set of destinations receiving packets from within the flow. The peerstring PS1 is set to BS and, if
included, PS2 is also set to BS, as illustrated in figures 6.3a and 6.3b. The multicast source also
caches a copy of each sent packet during a time interval ∆tscache.

Packet retransmission: When receiving an SR-NACK for a given packet, a source starts
a timer ∆tsagg, during which it collects potential subsequent SR-NACKs for the same packet from
other destinations. Upon expiration of this timer, a retransmission of the packet is performed,
with the set of destinations that have sent a NACK as the BIER bitstring.

6.3.2 Intermediate Router Operation

BIER bitstring processing: BIER packets are processed according to the BIER specifica-
tion [8]. Only bits corresponding to destinations for which the shortest-path is via interface i are
preserved in the bitstring contained in multicast data packets transmitted over that interface i.

Peerstring processing: Upon receipt of a reliable BIER packet with a bitstring BSin,
and before forwarding it over interface i (with outgoing bitstring BSout

i ), a router must update
PS1 and, if included, also PS2. In two-peerstrings mode, first PS2outi is set to PS1in. Then,
the peerstring PS1out is set to the OR of the bitstrings sent over all other interfaces (formally,
PS1outi ← ∪j 6=iBSout

j )1. This way, the PS1 sent over each interface contains the set of those
other destinations, to which this router has sent a copy of the packet. Note that the use of bitwise
operators to compute peerstrings makes it a simple operation to be implemented in hardware.

6.3.3 Destination Operation

Packet reception: Upon receipt of a packet by a destination, the packet is cached for a
duration of ∆tpcache for potential retransmission to a peer. The peerstring(s) of the packet are
inspected. The included PS1 is used for updating the set P1 of “local” peers. If included, PS2 is
used for updating the set P2, of second-most local peers.

Packet loss: Upon detection of loss of a packet in a given flow (by receiving a packet in the
same flow, whose reliable BIER header indicates a higher sequence number), a destination builds
an SR-NACK packet. The SR-NACK contains a reliable BIER header with the flow identifier and
the sequence number of the requested packet, and its segment list is set to (p1, . . . , pn, s), where
the pi’s are peers selected from P1 and P2, and where s is the source. Different policies can be used
for deciding which peers to include from P1 and P2, and in which order, as described in section 6.4.

While sending the SR-NACK, the destination starts a ∆tdretry timer. When this timer expires, if
no retransmission is received, the same SR-NACK is retransmitted – until either the missing packet
is received, or a retransmission request limit Rlim is reached – after which recovery is aborted. (If
semi-reliability is unacceptable, Rd

lim must be set to ∞.)
Packet retransmission: Upon receipt of an SR-NACK, a peer inspects the reliable BIER

header of the SR-NACK and extracts the flow identifier and sequence number. If a cached copy
of the requested packet is available, it is scheduled for retransmission; otherwise, the SR-NACK is
forwarded to the next entry in the segment list (i.e., to the next peer or, ultimately, to the source).

Retransmissions from peers use the same mechanism as those from the source: a timer ∆tpagg is
used to collect other NACKs before sending the copy to the set of destinations which have NACKed
the packet.

1PS1outi ← BSin \ BSout
i is an equivalent way of proceeding, as ∪j 6=iBSout

j = BSin \ BSout
i holds as an

invariant.



80 CHAPTER 6. RELIABLE BIER WITH PEER CACHING

6.4 Peer Selection Policies

As introduced in section 6.3.3, upon missing a packet, a destination will build an SR-NACK
with peer(s) extracted from P1 and P2. The framework introduced in this chapter is agnostic to
the policy used for selecting those peers. To illustrate this, the remainder of this section suggests
examples of simple policies for selection of peers to be included in SR-NACKs: (i) random selection
of peers, (ii) clustered selection of peers, and (iii) a simple adaptive (statistically-driven) policy.

6.4.1 Random Peer Selection

This policy builds an SR segment list (p, s) where s is the source, and p is a peer randomly
selected from P1. Randomly selecting peers from P1 may increase locality of retransmissions, but
rarely allows aggregation of multiple retransmissions into a single BIER packet. As an example,
if ten destinations d1, . . . , d10 have the same parent (thus, for each di, P1 = {d1, . . . , d10} \ {di}),
and d1, d2 both detect loss of the same packet, the probability that d1 and d2 send an SR-NACK
for this packet to the same peer in {d3, . . . , d10} is 1/8.

6.4.2 Deterministically Clustered Peer Selection

This policy builds an SR segment list (p, s) such that all destinations with the same parent
router (i.e., all destinations with the same P1) select the same p. As a convenient convention, for
this chapter, all d will select as p the element in P1 \ {d} with the highest index.

This policy generalizes for two-peerstring mode by building a SR segment list (p1, p2, s). All d
will select as p1 the element in P1 \ {d} with the highest index, and as p2 the element in P2 \ {d}
with the highest index.

While this policy favours aggregation of local retransmissions into a single BIER packet, it does
not guard against selecting an unsuitable peer, e.g., a peer located behind a particularly lossy link.

6.4.3 Adaptive Statistically-driven Peer Selection

As long as the constraint that the last segment in the SR segment list for a SR-NACK must be
the source is satisfied, any adaptive policy – allowing a destination to observe and “learn” which
peers are good candidates from whom to request retransmissions – can be be used for selecting
additional peers for inclusion.

Formally, this is an instance of the Multi-Armed Bandit problem: an agent (a destination
needing a retransmission) repeatedly activates one of several casino arms (in this case: sends an
SR-NACK to a peer) and collects a reward (here: obtains a retransmission or not). The goal is a
policy which maximizes the expected reward [156–158].

As an illustration, a simple ε-greedy peer selection policy is employed: with probability ε
(ε ≪ 1), a destination detecting a packet loss sends an SR-NACK to a random peer among the
set of available peers. With probability (1 − ε), it sends an SR-NACK to the peer from which it
has received the highest number of successful retransmissions so far. The value of ε reflects the
trade-off between exploration (contacting random peers and gathering statistics) and exploitation
(requesting retransmission from the best known candidate) – between reactivity to changes and
performance after convergence.

6.5 Policy Analysis

The impact of using peer caching and peer retransmissions, and of each of the policies introduced
in section 6.4, can be quantified analytically. Section 6.5.1 provides a basic analysis of the benefits
of local retransmissions, and section 6.5.2 derives an analytical model for the random and clustered
policies. Section 6.5.3 then explores the benefits from a simple, adaptive policy.

6.5.1 Recovery Locality

The assumption in this chapter is that sending local recovery requests to a local peer is likely
to be both “cheaper” than sending the request to the multicast source, and successful – i.e., a
“close” neighbour is likely to have successfully cached the requested packet. This section explores
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the latter of these two assumptions, by quantifying the probability distribution of the distance
from a destination having not received a given packet, to the closest peer that has (and is therefore
able to perform a retransmission).

A regular tree topology is assumed, wherein inner nodes are intermediate BIER routers, and
leaves are destinations. Nodes at a given depth are assumed to have the same number of children,
and links at a given depth have the same loss probability. As corresponds to the operation of
BIER, the root node of the tree is assumed to be the multicast source.

The tree is of height h, with node ranks indexed by their depth in the tree, from 0 (the source)
to h. Similarly, links ranks are indexed from 0 (links from source to first descendants) to h − 1.
Each node at rank i ∈ {0, . . . , h} has ci children (with ch = 0) and αi is the loss probability of links
at rank i ∈ {0, . . . , h− 1}. Multicast transmission of a single packet to all leaves is considered.

Lemma 6.1 gives the probability that no nodes in a subtree rooted at a given node receives the
multicast transmission.

Lemma 6.1. The probability bi that a multicast transmission from a node at rank i ∈ {0, . . . , h}
does not reach any destination (within its subtree), is:

bi = [αi + (1− αi)bi+1]
ci (6.1)

Proposition 6.1. The distribution of D, defined as the shortest distance from an arbitrary destina-
tion to a destination having successfully received the multicast transmission can for k ∈ {1, . . . , h}
be derived from (6.1):

fD(2k) =

[

h−k−1
∏

i=0

(1− αi)

]

(αh−k + (1− αh−k)bh−k+1)

× [1− [(1− αh−k)bh−k+1 + αh−k]
ch−k−1] (6.2)

with:
{

fD(0) =
∏h−1

i=0 (1− αi)
fD(∞) = b0

In proposition 6.1, fD(0) corresponds to the probability that a destination has successfully
received the multicast transmission.

Let D̄ denote the distance towards the closest successful destination, as seen from a destina-
tion having not received the packet. The probability distribution of D̄ can be computed as the
conditional distribution of D (see proposition 6.1) given that the packet is not received (which has
probability 1− fD(0)), as shown in corollary 6.1.

Corollary 6.1. The distribution of D̄, defined as the minimum distance from a destination that
missed a packet to a destination which successfully received the packet is, for k ∈ {1, . . . , h}:

fD̄(2k) =
fD(2k)

1− fD(0)

=

∏h−k−1
i=0 (1− αi)

1−∏h−1
i=0 (1− αi)

(αh−k + (1− αh−k)bh−k+1)

× [1− [(1− αh−k)bh−k+1 + αh−k]
ch−k−1] (6.3)

with:
{

fD̄(0) = 0

fD̄(∞) = b0
1−fD(0) =

b0
1−

∏h−1
i=0 (1−αi)

The probabilities αi of loss at each link appear in equations (6.2) and (6.3), allowing to reflect
different topology assumptions. In some topologies, loss probabilities may, e.g., be assumed negli-
gible for links close to the source, and more significant for links close to destinations (i.e., αi < αj

if i < j). Two models for rank-dependent link loss probabilities are considered:

• Linear increase (lin): αi = αmax
i

h−1 .

• Exponential increase (exp): αi = αmax
ei−1

eh−1−1
.
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Figure 6.5 – Example with a policy X over n = 10 destinations, with K = 4 destinations (2, 5, 6 and
7) having lost a packet. Arrows indicate recovery requests (SR-NACKs): destination 2 requests recovery
from peer 1; destination 5 from peer 2; and destinations 6 and 7 from peer 10; SX = 3 recovery requests
are successful (i.e., those from 2, 6 and 7), as peers 1 and 10 have correctly received the original packet;
TX = 2 retransmissions are performed (from 1 and 10).

Figure 6.4 depicts the distribution of the minimum distance from a destination that missed a
multicast transmission, and to a destination successfully receiving a multicast transmission, fD̄(2k).
Two tree topologies with 256 destinations are considered: (i) h = 5, (c0, . . . , c5) = (1, 2, 2, 2, 32);
and (ii) h = 7, (c0, . . . , c7) = (1, 2, 2, 2, 2, 2, 8).

It can be observed that the expected shortest distance between a failing destination and a
successful peer is lower for the exponential loss model (in which the loss probability for top links
is lower) than for the linear loss model. In other words, as expected, if top links are less lossy, it
is more likely for a failing destination to be able to recover from a close destination.

This confirms the intuition that in networks with this type of loss distribution (such as can be
envisioned in data-centers, or in networks where the “last hop” is for instance a wireless link or
a consumer grade residential xDSL), selection of local recovery peers (e.g., peers that are in the
same subtree or in the immediately upper subtree) should be preferred to selection of peers farther
away.

6.5.2 Clustered and Random Policies

The properties and performance of the two simplest (and most “extreme”) static peer policies
of section 6.4 – random and clustered peer selection – is studied by way of two metrics: the number
of recovery successes (performance) and the number of incurred recovery retransmissions (cost).
A recovery is successful if a destination detecting the loss of a packet sends an SR-NACK to a peer
that previously has received and cached a copy thereof. The number of recovery retransmissions
incurring is the number of unique peers, which are selected for retransmission by the set of desti-
nations which have lost that packet. This is because each selected peer will send only one BIER
transmission as a response to receiving a set of SR-NACKs for the same multicast packet.

For the remainder of this section, a subtree with n destinations is considered, and recovery of
one packet within this subtree is examined.

The following variables are introduced (where X denotes a particular selection policy: R for
the random policy and D for the clustered policy):

• K, the number of destinations which did not receive the packet by way of the original mul-
ticast transmission from the source;

• SX , the number of recovery successes, i.e., destinations which did not receive the packet by
way of the original multicast transmission from the source, but which successfully received a
retransmission from a peer, in response to an SR-NACK.

• TX , the number of recovery retransmissions, i.e., of unique peers which received an SR-NACK
for a given multicast packet.
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Figure 6.5 shows an example with n = 10 destinations, K = 4 destinations missing a packet,
SX = 3 successful requests (out of 4) and TX = 2 retransmissions.

Lemmas 6.2 and 6.3 describe the probability density function (PDF) of the number of recovery
successes (SR, SD) and of the number of retransmissions (TR, TD), for the random and clustered
policies, respectively. For the number of retransmissions with the clustered policy, it is assumed
that a peer, from receiving the first SR-NACK and until retransmission of the packet, waits a
sufficiently large amount time so as to maximize the ability of aggregating retransmissions into a
single BIER-transmission.

Lemma 6.2 (Random selection policy). Given K = k destinations (0 ≤ k ≤ n) that did not receive
the multicast transmission from the source, the probability that, from among these k destinations,
s (0 ≤ s ≤ k) will choose a peer which did receive the multicast transmission from the source,
P[SR = s|K = k] ≡ fSR,k(s), is, under the random selection policy:

fSR,k(s) =

(

k

s

)(

k − 1

n− 1

)k−s(
n− k

n− 1

)s

(6.4)

Given s recovery successes, the probability of t retransmissions (0 ≤ t ≤ s), P[TR = t|SR =
s,K = k] ≡ fTR,k,s(t), is:

fTR,k,s(t) =

(

n− k

t

) t
∑

i=0

(−1)t−i

(

t

i

)(

i

n− k

)s

(6.5)

Proof. Consider the transmission of a multicast packet to a cluster of n destinations, from among
which k do not receive the packet. Each of the k non-successful destinations then selects a peer at
random among (n − 1) peers (all peers but itself), and there are (n − k) successful peers, thus this
selection is successful with probability n−k

n−1
. Therefore, the probability that s of the k non-successful

destinations sends a NACK to a successful peer follows a binomial law with parameter n−k
n−1

, yielding
equation (6.4).

To derive equation (6.5), assume that there are s successful recoveries. The number of retransmissions
t incurred by these s recoveries corresponds to the number of unique elements sampled when drawing
with replacement s elements from a set of (n− k) elements. From [159], this is:

1

(n− k)s
× (n− k)!

(n− k − t)!
×
{

s

t

}

where
{
s

t

}
(Stirling number of second kind) represents the number of ways to partition s elements into

t non-empty subsets, and can be expressed as:

{

s

t

}

=
1

t!

t∑

i=0

(−1)t−i

(

t

i

)

is

Combining these two expressions yields equation (6.5), which concludes the proof.

Lemma 6.3 (Clustered selection policy). The probability that s destinations (out of k ≥ 2 desti-
nations that did not receive the multicast transmission from the source) will choose a peer which
did receive the multicast transmission from the source, P[SD = s|K = k] ≡ fSD,k(s), is, under the
clustered selection policy:

fSD,k(s) =























n−k
n if s = k

k
n

(

1− k−1
n−1

)

if s = 1

k
n

k−1
n−1 if s = 0

0 otherwise

(6.6)

The probability of having t retransmissions, P[TD = t|K = k] ≡ fTD,k(t), is:

fTD,k(t) =











1− k
n

k−1
n−1 if t = 1

k
n

k−1
n−1 if t = 0

0 otherwise

(6.7)
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As edge cases, when k = 1, there is one recovery/retransmission: SD = TD = 1; and when
k = 0, there are no recoveries/retransmissions: SD = TD = 0.

Proof. Consider the clustered policy, whereby a failing destination sends a NACK to a designated
peer p, and p itself if failing sends NACKs to another designated peer p∗. Consider the transmission of
a multicast packet to a cluster of n destinations, from among which k do not receive the packet. Each of
the k non-successful destinations then sends a recovery request (NACK) to p (or p∗ if the non-successful
destination is p itself). If the designated peer p is not amongst the k failing destinations (which happens
with probability n−k

n
), all the recoveries are successful, and SD = k. If the designated peer p is among

the failing destinations, but not its retransmitter p∗ (which happens with probability k
n

(

1− k−1
n−1

)

), then

only one recovery request is successful (the one from the designated peer p), and SD = 1. Finally, if
both the designated peer p and its retransmitter p∗ are among the k failing destinations (which happens
with probability k

n
k−1
n−1

), no retransmission request is successful, and SD = 0. Combining these three
cases yields equation (6.6).

To derive equation (6.7), it suffices to note that both cases SD = k and SD = 1 yield one retrans-
mission, and that SD = 0 yields zero retransmissions. Thus P[TD = 1|K = k] = P[SD = k|K =
k] +P[SD = 1|K = k] and P[TD = 0|K = k] = P[SD = 0|K = k], yielding equation (6.7).

From lemmas 6.2 and 6.3 follow two key results, describing the average number of recovery
successes (proposition 6.2) and the average number of retransmissions (proposition 6.3 and corollary
6.2).

Proposition 6.2. Assuming K = k destinations that did not receive the multicast transmission
from the source, the expected number of recovery successes for the random and clustered approaches
is the same, and has the value:

E[SR|K = k] = E[SD|K = k] =
k(n− k)

n− 1
(6.8)

Proof. Assuming that k destinations have missed the multicast packet, SR has a binomial distribution
with k samples and with success probability n−k

n−1
. Thus, E[SR|K = k] = k × n−k

n−1
by definition, which

proves equation (6.8) for the random policy.
From equation (6.6), the expected value of SD can be computed as:

E[SD|K = k] = k × n− k

n
+ 1× k

n

(

1− k − 1

n− 1

)

=
k

n− 1
(n− k)

which proves that E[SR|K = k] = E[SD|K = k].

Proposition 6.3. Assuming K = k destinations that did not receive the multicast transmission
from the source, the expected number of retransmissions for random (SR) and clustered (SD) poli-
cies have the following expressions:

E[TR|K = k] = (n− k)− (n− k)

(

n− 2

n− 1

)k

(6.9)

E[TD|K = k] =

{

1− k(k−1)
n(n−1) if k ≥ 1

0 if k = 0
(6.10)

Proof. Assuming that k destinations have missed the multicast packet, and that s recoveries are suc-
cessful, the expected number of incurred recovery retransmissions for the random policy is computed
by averaging equation (6.5):
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E[TR|SR = s,K = k] =
s∑

t=0

t×P[TR = t|SR = s,K = k]

= (n− k)

[

1−
(
n− k − 1

n− k

)s]

Then, the average number of retransmissions with no assumption on s can be obtained by combining
this result with equation (6.4), yielding (with p = k−1

n−1
to ease notation):

E[TR|K = k] =

k∑

s=0

E[TR|SR = s,K = k]×P[SR = s,K = k]

= (n− k)− (n− k)
k∑

s=0

(

k

s

)

pk−s(1− p)s
(
n− k − 1

n− k

)s

= (n− k)− (n− k)

(
n− 2

n− 1

)k

For the clustered policy, deriving the expected number of retransmissions is done by averaging
equation (6.7), and by noting that since the number of retransmissions is either 0 or 1, the expected
value is simply the probability that there is one retransmission:

E[TD|K = k] = P[TD = 1|K = k]

=

{

1− k(k−1)
n(n−1)

k ≥ 1

0 k = 0

concluding the proof.

The following corollary compares the behavior of both policies when considering that each des-
tination has, independently, the same probability of having not received the multicast transmission
from the source.

Corollary 6.2. Assuming that each destination has (independently of the others) a probability β ∈
[0, 1] of not having received the multicast transmission from the source (i.e., the probability of having
k destinations which did not receive the multicast transmission from the source is binomial with
parameter β, and thus P[K = k] =

(

n
k

)

βk(1−β)n−k), then the expected number of retransmissions
with the random policy grows linearly with the number of destinations, whereas the expected number
of transmissions with the clustered policy is bounded:

{

E[TR] ∼n→∞ n(1− β)(1− e−β) = Θ(n)

E[TD] ∼n→∞ 1− β2 = Θ(1)
(6.11)

Proof. Assuming that each destination has missed the multicast packet independently with probability
β, the number K of failing destinations follows a binomial distribution:

P[K = k] =

(

n

k

)

βk(1− β)n−k (6.12)

For the random policy, it is possible to deduce the expected number of retransmissions (averaged
over the failing destinations k) by combining equations (6.9) and (6.12):

E[TR] =

n∑

k=0

E[TR|K = k]×P[K = k]

= (n− nβ)−
n∑

k=0

(

n

k

)

βk(1− β)n−k(n− k)

(
n− 2

n− 1

)k

= n(1− β)

[

1−
(

1− β

n− 1

)n]
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Figure 6.6 – Number of destinations able to obtain a retransmission of a packet from a peer, when k = 35
out of n = 100 have not received the initial multicast transmission.

which is, if n→∞ and β 6= 0, β 6= 1, using Taylor’s 1st-term approximation of
(

1− β

n−1

)n

:

E[TR] = n(1− β)(1− e−β) +O(1)

The same reasoning can be used for the clustered policy. The expected number of retransmissions
becomes, by using (6.10) and (6.12):

E[TD] =
n∑

k=0

E[TD|K = k]×P[K = k]

=

n∑

k=1

(

n

k

)

βk(1− β)n−k

(

1− k

n

k − 1

n− 1

)

= 1− (1− β)n − β2

which is, if n→∞ and β 6= 0:
E[TD] = 1− β2 + o(1)

concluding the proof.

From proposition 6.2, both policies yield the same performance on average, i.e., the expectation
of the number of recovery successes is the same for both policies. The clustered policy achieves
the same reliability as the random policy by concentrating recovery requests on a single peer,
which allows aggregation of retransmissions into a single BIER retransmission. Since aggregation
occurs less often in the random policy, in terms of retransmission cost, the random policy is more
expensive (linear in the number of destinations vs constant), as shown in corollary 6.2.

This difference is only possible because random and clustered policies achieve their (equal)
average performance through different probability density distributions, as shown in figure 6.6. In
this example, it is assumed that k = 35 destinations out of n = 100 have not received the initial
multicast transmission. While with the random policy there is negligible chance that no less than
15 and no more than 30 destinations are able to obtain a retransmission from a peer, the clus-
tered policy operates on an all-or-nothing fashion: all 35 destinations will obtain a retransmission
from a peer with high probability – but recovery may be mostly unsuccessful with non-negligible
probability (∼ 12% for 0 successes, 23% for only one success over 35).

In other terms, given a Service Level Agreement (SLA) commitment specifying a minimum
fraction of destinations (1−δ) (with δ ≪ 1) being served without the need for source retransmission
(either because destinations receive the packet in the first BIER transmission from the source or
because the first peer recovery request is successful), there is a higher probability that systems are
SLA-compliant when using the random policy, than systems using the clustered policy, for small
tolerance values (δ > 0.05 in figure 6.7) – and the gap between random and clustered policies
is substantial for a non-negligible interval (δ ∈ [0.05, 0.25] in figure 6.7). The probability that a
(1− δ) fraction of destinations is served without resorting to source retransmissions, under policy
X, corresponds to function gn,β,X(δ) described in equation (6.13), and is illustrated in figure 6.7
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Figure 6.8 – Success ratio (after 1st recovery) for the ε-greedy policy, for static and dynamic scenarios.

for n = 100, β = 0.2, and random and clustered policies. It corresponds to:

gn,β,X(δ) = P[SX > K − nδ]

=

n
∑

k=0

P[SX > K − nδ|K = k]P[K = k] (6.13)

where P[SX > x|K = k] can be computed from equations (6.4) and (6.6). When source retrans-
missions are significantly less preferable (e.g., due to a substantially higher delay incurred) than
peer retransmissions, this may translate into a substantial quality degradation of the clustered
policy with respect to the random policy. While the gap amplitude is dependent on the value of β
(i.e., lower loss probabilities at destination lead to shorter gaps, as it can be expected), the trend
shown in figure 6.7 is invariant for values of n and β.

6.5.3 Going Adaptive: the ε-Greedy Policy

For the purpose of this analysis, a binary (c = 2) multicast BIER transmission tree with height
h = 7 is considered, so as to illustrate the ability of the simple ε-greedy adaptive policy to learn
and adapt to changes in networking conditions, under two different scenarios:

• A static scenario, where all links are lossy (α = 0.1), except for links between the source and
destination 0 – i.e., with a static “best” (ideal) peer from which to request retransmission.

• A dynamic scenario which reflects a situation with failure of a “good” peer. Specifically
destination 0 is, as in the static scenario and for the same reasons, the “best” (ideal) des-
tination (α = 0 for links from destination 0 and to the source) up until multicast packet
number 8000, after which it becomes a “bad” destination behind highly lossy links (α = 0.4).
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Figure 6.9 – Number of destinations that did not receive the multicast transmission from the source, and
which are selecting peers 0 and 32 under the ε-greedy policy, in static and dynamic scenarios

Concurrently, destination 32 is a relatively good, though not perfect, destination (α = 0.01)
during the entire duration of the flow.

Results of these simulations are reported in figure 6.8, which depicts the ratio of failing desti-
nations choosing a successful peer as retransmission candidate, and figure 6.9, which depicts the
number of failing destinations choosing destination 0 as a retransmission candidate2. It is worth
observing that, in these simulations, recoveries are idealized: retransmissions from contacted peers
are always successful if the contacted peer holds a copy of the requested BIER packet.

Unsurprisingly, ε = 0 (i.e., choosing deterministically the destination with highest success
record) achieves steadier performance than does ε = 0.2 (i.e., choosing random destinations for
recovery 20% of the time) in static conditions, as depicted in figure 6.8a. Using ε = 0.2, however,
performance is less impacted by the failure of destination 0, and the system adapts faster to the
new conditions, as depicted in figure 6.8b. As shown in figure 6.9b, failing destinations when using
ε = 0.2 switch to destination 32 quicker, after the failure of former ideal destination 0.

6.6 Simulation Environment

The reliable multicast mechanism described in this chapterhas been implemented in ns3 [147]
as four components: (i) a BIER forwarding plane (as described in section 6.3.2), (ii) a Segment
Routing forwarding plane, (iii) a reliable BIER layer for a source (section 6.3.1), and (iv) a reliable
BIER layer for destinations (section 6.3.3).

The reliable BIER layer at the source interfaces with the UDP socket API, to transform UDP
multicast packets into BIER packets, while also caching a copy of sent packets so as to be able to
retransmit them on receipt of SR-NACKs. The reliable BIER layer at a destination also interfaces
with the UDP socket API, collecting received BIER packets before handing them (in-order) over
to the UDP socket. This layer also caches a copy of received packets, so as to be able to retransmit
them on receipt of a SR-NACK from a peer, and generate SR-NACKs when a packet loss is
detected.

The parameters as defined in section 6.3 are: ∆tsagg = ∆tpagg = 7 ms, ∆tpcache = 50 ms,

∆tscache = 100 ms, ∆tdretry = 15 ms, Rd
lim = 3. Notably, the value of the SR-NACK retry delay

is set significantly greater than the NACK aggregation delay, ∆tdretry ≫ ∆tagg, so that a second
NACK is only sent if the source (or peer) has had the chance to send a retransmission and has
failed.

6.6.1 Links and Link Loss Model

All links are point-to-point, with 1 Gbps throughput and 1 µs propagation delay, have an MTU
of 1500 bytes, and are attached to interfaces with drop-tail queues of size 512 packets.

2Results have been smoothed with an Exponential Window Moving Average filter with parameter α = 0.01.
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Figure 6.10 – Datacenter topology for simulations of section 6.7

The link loss model used for all links in the simulations is a clock-based Gilbert-Elliott model [148,
160], where the probability of a successful transmission is k = 1 in good state and h = 0.5 in bad
state. Transitions from bad to good, and from good to bad, are triggered with exponential clocks,

of mean 1/r = 2.5 ms and 1/p = (h−α)
αr = (0.5−α)

α × 2.5 ms, respectively, where α ∈ [0, 1] is a
parameter representing “packet loss probability”.

According to [149], the probability πB of being in bad state is πB = p
p+r = 1

1+(h−α)/α = α
0.5 ,

yielding an expected link loss rate of πB(1−h)+ (1−πB)(1− k) = 0.5πB = α. This justifies using
α as a parameter to tune the average packet loss probability. This loss model is only applied to
multicast data packets – SR-NACKs are not subject to losses, as the path from destinations to the
source is supposedly less lossy3.

6.7 Data-Center Simulations

For the purpose of evaluating the mechanism introduced in this chapter, a data-center-like
topology is used. This reflects, e.g., distributed storage, distribution of software upgrades, pre-
placement of content, etc.

6.7.1 Network Topology

The topology used in this set of simulations is as follows, illustrated in figure 6.10:

• a source, “outside” the data-center – reachable across a capacity constrained connection (e.g.,
a connection incurring higher delays, which has limited throughput, or subject to a higher,
congestion-induced, loss probability) is attached to a core router;

• the core router is attached to 2 aggregation routers;

• each aggregation router is attached to 2 Top-of-Rack (ToR) routers;

• each ToR router is attached to 10 machines in a rack (destinations).

6.7.2 Evaluation Objectives

The objective of using SR-NACKs for requesting retransmissions from peers, rather than di-
rectly from the source, is specifically not to minimize the number of global transmissions – but
rather to maximize the number of retransmissions that can be satisfied locally, i.e., within the
data-center. Consequently, one key metric is the number of retransmissions performed by the

3Whereas traffic from the source to the destination is bursty, and therefore likely to cause interface buffers to
run full and drop packets, traffic from destinations to the source is expected to be sparse (essentially, SR-NACKs).
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Figure 6.11 – Data-center topology: clustered vs random peer selection within same subtree, and for
different values of the Gilbert-Elliott link loss probability α.

source – corresponding to the load of the link between the source and the core router (bold link in
figure 6.10).

6.7.3 Static Peer Policy - One-Peerstring Mode

To baseline the benefits of locality, the two static peer selection policies introduced in sec-
tion 6.4.1 (random) and in section 6.4.2 (clustered) are tested in one-peerstring mode: a destina-
tion, which detects that a packet has been lost, sends an SR-NACK towards first a “local” peer4

according to the policy, then to the source. These are compared with simple reliable BIER without
peer recovery (i.e., wherein NACKs are sent directly to the source).

Figure 6.11 depicts the results of 19 four-second long simulations using a 500 Mbps multicast
flow (i.e., 166673 BIER-packets generated by the source), for different values of α (see section 6.6)
applying uniformly to all links. Figure 6.11a shows the link usage of the ingress link to the core
router (averaged over the duration of the simulation). Using simple reliable BIER, the source
performs all retransmissions, and this link saturates for α ≥ 7%. With peer-based retransmissions,
even with α = 10%, this link remains well below saturation, with a link usage below 680 Mbps.
This is detailed in figure 6.11a.

On receiving an SR-NACK, a peer waits for ∆tpagg, to allow receiving SR-NACKs from other
peers, before a single aggregate BIER retransmission is made. Thus, the number of destinations in
the bitstring is an indicator of the ability to reduce the number of retransmissions. This is depicted
in figures 6.11c and 6.11d, for random and clustered peer selection, and for retransmissions made
by the source or by a peer.

Retransmissions by the source are required when both the originator of an SR-NACK and the
selected peer have not received a given packet – e.g., when the packet was lost over the link between
an aggregation router and a ToR router (see figure 6.10), in which case all the destinations below
that ToR router would need to receive a retransmission, explaining the “step” at 10 destinations in
source bitstrings (figures 6.11c and 6.11d). The similar step around 20 destinations in the source
bitstrings is due to either a loss over the link between an aggregation router and the core router,
or a packet being lost over two distinct links (between any aggregation router and ToR router).

Figures 6.11c and 6.11d also show that random peer selection (expectedly) does not facilitate
aggregation, whereas clustered peer selection allows for some – since peers are only selected within
the same subtree as that of the originator of the SR-NACK. Thus (i) a peer retransmission bitstring
has ≤ 9 destinations, and (ii) if a loss is over a link between the ToR router and an aggregation

4A peer is considered “local” if it has the same parent – in which case, it is indicated in the received PS1in.
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Figure 6.12 – Data-center topology: clustered peer selection in two subtrees vs in one subtree, for different
values of the Gilbert-Elliott link loss probability α.

router, only retransmissions from the source are possible.

6.7.4 Static Peer Policy - Two-Peerstrings Mode

A variation of the clustered peer policy (section 6.4.2) is possible when using two peerstrings.
A destination detecting that a packet has not been received will send an SR-NACK towards first
the leftmost “local” peer, then the leftmost second-most local5 peer, and finally the source. The
objective is, again, to reduce the number of retransmissions needed from the source, at the cost of
potentially more total (but local) traffic.

The baseline for this approach is the clustered peer selection policy of section 6.7.3, as well
as standard reliable BIER, therefore the same topology, traffic patterns, and link loss model are
used. The simulation results for different values of α are depicted in figure 6.12, where figure 6.12a
shows that the two-peerstring approach yields a further reduction in the link usage on the ingress
link to the core router, due to fewer retransmissions being required by the source. In figure 6.12b,
this reduction appears to be from 2.2× less (when α = 0.05) to 3.3× less (when α = 0.02), when
comparing to the one-peerstring approach.

Using the two-peerstring mode, retransmissions by the source are required only when neither
the originator of an SR-NACK, nor its selected local peer, nor its selected second-most local peer,
have received a given packet – e.g., when the packet was either (i) lost over the link between
an aggregation router and the core router, or (ii) lost over all of the links from an aggregation
router and to the connected ToR routers (figure 6.10). In this case all the destinations below
that aggregation router would need to receive a retransmission, which explains the “step” at

5A peer is considered “second-most local” if it has the same grandparent, but not the same parent – in which
case, it is indicated in the received PSin

2 .
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Figure 6.13 – Data-center topology with one ideal peer per rack: ε-greedy peer selection in subtree vs
random, for different values of the Gilbert-Elliott link loss probability α.

20 destinations in source bitstrings in figure 6.12c. The similar, but smaller, step around 10
destinations in the source bitstrings indicates the loss of a packet over only one of the links between
an aggregation router and a ToR router. This confirms a greater degree of aggregation (among 20
destinations, rather than 10) of source retransmissions.

6.7.5 Adaptive Peer Policy

To simulate the existence of some local peers being “more suitable” than others, the link loss
model is modified such that each ToR router has exactly one destination with a non-lossy ToR-
to-destination link. An adaptive policy should then enable all other destinations connected to
that ToR router to “learn” that this peer is the “most suitable” peer for retransmissions, and
therefore, when detecting that a packet has not been received, send an SR-NACK towards first
this “most suitable” peer, and only then to the source. To exemplify this, and to examine the
intuitions from section 6.5.3, the ε-greedy policy has been implemented and tested against the
random peer selection policy6 (section 6.7.3) and standard reliable BIER. In order to allow for
sufficient exploration, ε = 0.2 is used.

Simulations are run for different values of α, with results depicted in figure 6.13. As ε-greedy
allows directing an SR-NACK towards peers that have a greater chance of being able to retransmit
a packet, these are less often forwarded to the source, reducing the number of source retransmissions
(figure 6.13b) and the link usage of the ingress link to the core router (figure 6.13a). Finally, when
a SR-NACK is received by a “more suitable” peer, its retransmissions are more often successful

6The comparison is made to the random peer selection policy, rather than to any of the clustered peer selection
policies. Indeed, selecting the destination with the non-lossy link for any of the clustering policies would amount to
biasing in favour of that policy – selecting any other would amount to biasing in its disadvantage.
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Figure 6.14 – ISP topology: ε-greedy vs. random peer selection in subtree, for different values of the
Gilbert-Elliott link loss probability α.
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Figure 6.15 – Closeness centrality of the topology of figure 5.9.

(as it is connected to its ToR router over a non-lossy link), reducing subsequent retransmissions of
that packet.

Figure 6.13c visualizes the behavior of the ε-greedy policy through plotting the number of times
each peer is chosen by a destination as a candidate in an SR-NACK7. It can be observed that peers
0, 10, 20, 30 (i.e., the leftmost node of each rack, which is behind a non-lossy link) indeed contribute
to most of the recoveries.

6.8 ISP Simulations

To validate the genericness of the proposed approach with respect to the network topology,
another set of simulations has been conducted, this time in a real ISP topology. As compared
to section 6.7, the resulting spanning tree is non-regular. Use cases for reliable multicast in such
topologies include video streaming of live events.

7Only those times corresponding to the non-exploratory mode (where the destination actually selects its best
peer) are retained. This allows subtracting the uniform noise due to the ε fraction of NACKs whose destinations
are selected randomly.
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6.8.1 Network Topology

As in section 5.4, the topology used for the purpose of this set of simulations is the “BT Europe,
August 2010” topology extracted from the Internet Topology Zoo [150]. The topology is depicted
in figure 5.9, and consists of 24 nodes. All nodes are located in Europe, except for nodes 11 (New
York) and 12 (Washington DC), which are not visible on the figure, and have each a link to node 17
(London). As this topology features remote (transatlantic) nodes, it is suited to evaluate scenarios
wherein it is costly to traverse certain links. As such, the scenario studied in this section will be
the transmission of a multicast stream from node 11 (New York) to all other nodes.

Another point of interest of using such a non-regular topology is, that it provides a more natural
framework to test adaptive peer selection policies. Indeed, some destination(s) will automatically
be both close to the source (thus, more prone to have received packets because there are less links
in the path to the source) and close to an important number of other peers. As an illustration,
figure 6.15 shows the closeness centrality of each node in the graph, defined as the inverse of the
mean distance to the other nodes. It can be observed that nodes 17 (London), 21 (Amsterdam)
and 5 (Frankfurt) exhibit the highest centrality, meaning that they are ‘local’ to a large part of
destinations, and would therefore be natural candidates to act as retransmitting peers.

6.8.2 Peer Selection Policies Evaluation

For the purpose of the simulations, a client is attached to each of the nodes, except for node
11 (NYC), to which a source is attached; the Dijkstra algorithm is first run offline to construct
routing tables. As in section 6.7, links have 1 Gbps capacity, and the same simulation parameters
are used. A multicast flow of 500 Mbps is sent from the source to each of the clients during
four seconds, in 19 different simulations, for different values of the average link loss probability
α. The random selection policy with one peerstring is used to evaluate the core properties of the
mechanism introduced in this chapter. Additionally, the ε-greedy policy is evaluated, as a way to
examine the convergence of destinations under adaptive policies towards highly-central nodes as
retransmitters. Finally, as a baseline, simple reliable BIER as in chapter 5 is used.

Results are reported in figure 6.14. Figure 6.14a depicts the average usage of the link between
the source and the router to which it is attached. Whereas with standard reliable BIER the
link is saturated for high values of α (α ≥ 6%), usage of this link is reduced with peer-based
BIER retransmissions (the worst case being 720 Mbps for α = 10%), showing that the proposed
mechanism allows protecting the source from having to retransmit too many packets. This can be
also observed on figure 6.14b, depicting the number of individual packet retransmissions performed
by the source: the number of source retransmissions falls by a factor of at least 2.2× when using
peer-based retransmissions.

With respect to the comparison between static and adaptive policies, figure 6.14b shows that
the number of source-based retransmissions is further reduced when using the adaptive policy. This
can be explained by observing, for each peer, the number of packets successfully recovered through
this peer, for the static policy and the adaptive policy (figure 6.14c) – the figures display the
distribution for the lossiest tested scenario (corresponding to α = 0.1), so as to better visualize the
differences. Whereas with the static policy the distribution of retransmitters is relatively uniform,
with the adaptive policy it can be clearly observed that peers 17 and 5 (and, to a lesser extend,
peer 21) contributes to most of the recoveries. This confirms that retransmissions are handled by
peers with high centrality (see figure 6.15), providing some aggregation of the retransmissions (as
shown in figure 6.14d).

6.9 Summary of Results

This chapter extends the reliable multicast service based on BIER introduced in chapter 5. The
proposed extension uses BIER for ensuring that data traffic is forwarded over minimal shortest
path trees, and SR-based NACKs for reporting losses and requesting retransmissions. SR-NACKs
allow failing destinations to contact an ordered set of peers for local recovery, before requesting
retransmission from the source. All retransmissions are performed through BIER-enabled shortest
paths.

The proposed protocol is compatible with standard BIER operation (RFC 8279 [8]): no caching
is made by intermediate routers, retransmissions are regular BIER packets, and the retransmission
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logic is handled exclusively by sources and destinations. In addition, a lightweight extension to the
BIER forwarding plane is proposed (the processing of a peerstring in the BIER header), allowing
destinations to automatically learn about potential candidates from which to ask retransmissions.
In absence of this extension, peer-based recoveries can still be requested if destinations are manually
configured to do so. By allowing for local repair of multicast failures, the proposed mechanism
limits the amount of source retransmissions, and thus their impact in terms of network traffic and
delay.

The proposed framework is generic enough to accommodate a broad spectrum of policies for
selection of recovery peers, including static, adaptive, and operator-defined. Example of such poli-
cies are introduced and analyzed, both analytically and by way of network simulations. Evaluation
suggests that substantial benefits in terms of increasing locality of recoveries and reducing usage
of costly links can be achieved with relatively simple policies.
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Part IV

Load-Balancing

97





Chapter 7

6LB: Scalable and
Application-Aware Load
Balancing with Segment Routing

Virtualization and containerization has enabled scaling of application performance by way of
(i) running multiple instances of the same application within a data center, and (ii) employing a
load-balancer for dispatching queries between these instances.

For the purpose of this chapter, it is useful to distinguish between two categories of load-
balancers:

1. Network-level load-balancers, which operate below the application layer – a simple approach
being to rely on Equal Cost Multi-Path (ECMP) [161] to homogeneously distribute network flows
between application instances. This type of load-balancer typically does not take application state
into account, which can lead to suboptimal resource utilization.

2. Application-level load-balancers, which are bound to a specific type of application or
application-layer protocol, and make informed decisions on how to assign servers to incoming
requests. This type of load-balancer typically incurs a cost from monitoring the state of each
application instance, and sometimes also terminates network connections (such as is the case for
an HTTP proxy).

A desirable load-balancer combines the best of these categories: (i) be application or application-
layer protocol agnostic (i.e., operate below the application layer) and (ii) incur no monitoring
overhead – yet (iii) make informed dispatching decisions depending on the state of the applications.

Furthermore, data centers are more and more utilized to run virtualized network functions
alongside traditional applications. In light of this, network load-balancers are more and more
running as virtual functions (running for instance in virtual machines). This allows for the load-
balancers themselves to take full advantage of the flexibility and redundancy of a virtualized data
center: for resiliency, to allow a faulty load-balancer instance to be safely removed and replaced
without incurring a service outage, or for scalability, by growing (and shrinking) the number
of load-balancers to be able to accommodate different daily traffic demands and/or unexpected
traffic peaks. The resulting architecture will thus distribute incoming flows between an edge router
and several load-balancer instances, each of which will then redistribute the flows to application
instances [162, 163]. A challenge arising from this architecture is to provide a consistent service
when traffic for a given flow is directed by the edge router to a different load-balancer instance. This
can happen e.g., when a load-balancer instance is added or removed, causing the corresponding
ECMP mapping between the edge router and the load-balancers to be updated correspondingly.

Thus in addition to the three desired properties exposed above can be added: (iv) be able to
be fully distributed, providing the same service regardless of whether traffic is directed to different
load-balancer instances within the lifetime of a flow.

These four objectives may appear irreconcilable: operating below the application layer makes
it hard to take application state into account, and balancing by state rather than deterministically
ties a flow to a given load-balancer instance. This chapter aims at providing a solution satis-
fying these four objectives, by challenging the traditional network paradigm wherein a packet is
deterministically assigned only one destination.
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Figure 7.1 – 6LB architecture: load-balancers assign a flow to a set of candidate instances, through which
the connection is passed until one accepts the connection (section 7.2). The flow is then pinned to the
instance having accepted the connection (section 7.4).
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Figure 7.2 – 6LB consistent hashing: when a flow is rebalanced to another load-balancer instance by
the edge router, consistent hashing (section 7.3) allows the flow to re-browse the same set of candidate
instances, then to be re-pinned to the one that had accepted the connection (section 7.4).

7.1 Statement of Purpose

The purpose of this chapter is to propose 6LB, a load-balancing approach that is application-
instance-load-aware, yet is both application and application-layer protocol independent and does
not rely on centralized monitoring or transmission of application state.

A key argument behind this design goal is that an application instance itself is best positioned
to know if it should be accepting an incoming query, or if doing so would degrade performance.
Thus, 6LB disregards any design by which queries are unconditionally assigned to an application
instance by the load-balancer. Rather, 6LB offers a received query to several candidate application
instances, ensuring that exactly one instance accepts and processes the query.

The architecture behind 6LB is as follows, and as illustrated in figure 7.1: the edge router
receives and uses ECMP to assign each incoming flow to a load-balancer. Each load-balancer
selects a list of candidate application instances, to which it forwards the flow, using Segment
Routing (introduced in section 1.2.1). In this way, 6LB enables that flow acceptance decisions are
made strictly locally by an application instance, based on its real-time state information about
itself, only – i.e., without any centralized monitoring.

Once a flow is accepted by an application instance, it is “pinned” to it by the load-balancer:
subsequent packets in that flow are all forwarded directly to that application instance. As depicted
in figure 7.3, this is accomplished by the load-balancer inspecting the TCP handshake and estab-
lishing a mapping between a flow and the application instance serving it. A mechanism is provided
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to permit a load-balancer to recover this mapping, if for some reason it is lost1.
The final mechanism in 6LB is consistent hashing, as illustrated in figure 7.2: a given flow will

be assigned to the same set of candidate application instances, regardless of by which 6LB instance
(past, current, or future, in case the pool of instances changes) it is assigned.

While the algorithms developed in this chapter are generally applicable for any number of
candidate application instances, the concept of power of two choices [164] applies: selecting two
candidate application instances ensures a low network footprint while providing a significant load-
balancing improvement – with diminishing returns beyond that.

In addition to introducing the concept of directing queries through a chain of random candidate
application instances with SR and letting them perform local connection acceptance decisions, the
contributions of this chapter are: (i) a consistent hashing algorithm, (ii) an in-band stickiness
protocol (the union of which allows to scale the number of load-balancer instances for reliability
and performance), (iii) an analytic model analyzing the performance of SR-based load-balancing,
(iv) experiments with the 6LB load-balancing architecture conducted on a large testbed, and finally
(v) kernel-bypass implementations of 6LB and a state-of-the-art load-balancer (Maglev [162]) with
performance comparison of the two implementations.

7.1.1 Related Work

Among existing load-balancing approaches below the application layer, Maglev [162] and Ananta [165]
aim at providing a software load-balancer instance that can be scaled at will, and make use of
ECMP to distribute flows between those instances. In addition to a flow stickiness table, they
also make use of consistent hashing [166–168], for ensuring that data packets within a given flow
are directed to the same application instance – regardless of the selected load-balancer instance
forwarding a data packet, and with minimal disruption when the set of application instances
changes. However, flows are distributed to application instances regardless of their current load.
This is taken one step further in Duet [169] and Rubik [170], by moving the load-balancing func-
tion to hardware instances, while handing traffic over to software instances in case of failure.
Conversely, [171, 172] use Software Defined Networking (SDN), with a controller monitoring the
application instance load and network load, and then installing network rules to direct flows to
these application instances. Spotlight [173] allows for weighted ECMP, with weights periodically
updated by a centralized monitoring mechanism in order to reflect the current load of applications.
Other frameworks, such as Trumpet [174], can be used to gather precise monitoring information
on the network load.

Simple application-aware load-balancing policies (random, shortest queue, threshold) have been
introduced in [175]; in [164, 176], it is shown that performing a load-balancing decision based on
two random servers is sufficient to exponentially decrease the response time as compared to a
random strategy. This concept has been used by [177] for peer-to-peer applications. Another

1For example, if a load-balancer is removed, and another load-balancer takes over the active flows it was serving.
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similar idea, proposed in [178, 179], consists of duplicating queries among several replicas, and
serving the quickest reply to the client. Somewhat similarly, in [64], SR is used to duplicate traffic
through two different disjoint paths, so as to decrease latency and packet loss.

In [180], three load-balancing techniques are listed, which can be used for dispatching queries
among Web servers: DNS round-robin, dispatchers that perform NAT or destination IP rewrite,
and redirect-based approaches. Application-aware load-balancing mechanisms for static Web con-
tent include [181–183], which assign queries as a function of their estimated size so that each
application instance becomes equally loaded. In [184], a feedback approach is used to estimate the
parameters of a queuing model representing the system, before making a load-balancing decision.

Application-layer load-balancers, e.g., HAProxy [185], also propose application-awareness by
estimating the load on each application instance and assigning new queries accordingly. Load
estimates are obtained either by tracking open connections through the load-balancer to the appli-
cation instances (and thus do not consider other loads), or by periodically probing the backends for
load information (and thus suffer from polling delay and incur network overhead). Another issue
with application-level load-balancers is that network connections are reset when a failure causes
a flow to be migrated from one load-balancer instance to another. The load-balancer introduced
in [186] aims at solving this by keeping per-flow TCP state information in a distributed store.

7.1.2 Chapter Outline

The remainder of this chapter is organized as follows. Section 7.2 describes the use of Segment
Routing for performing load-balancing. Section 7.3 describes a consistent hashing algorithm, which
allows to distribute the load-balancing function into different instances, for scalability. Section 7.4
describes how “stickiness” can be established and recovered between load-balancer instances and
application instances, using an in-band channel. An analytical performance model of 6LB is de-
rived in section 7.5. 6LB is then experimentally evaluated in section 7.6, by way of a synthetic
workload and a realistic workload consisting of a Wikipedia replica, and the performance of the im-
plementation in terms of packet forwarding capabilities is evaluated. Finally, section 7.7 concludes
this chapter.

7.2 Service Hunting with Segment Routing

This section describes how application-load-aware load-balancing can be performed, by way of
a concept which will be referred to as Service Hunting.

7.2.1 Description

Service Hunting uses SR to direct network packets from a new flow through a set of candidate
application instances until one accepts the connection. It assumes that applications are identified
by virtual IP addresses (VIPs), and can be replicated among several instances, identified by their
physical addresses. As introduced in section 1.4, machines run a virtual router (e.g., VPP [31]),
which dispatches packets between physical NICs and application-bound virtual interfaces. Finally,
a load-balancer within the data center advertises routes for the VIPs.

When a new flow2 for a VIP arrives at the load-balancer, the latter will select a set of candidate
application instances from a pool, and insert an SR header identifying this set into the IPv6 data
packet. The SR header will contain a list of segments, each indicating that the query can be
processed by either of these application instances, and with the VIP as the last segment. Different
policies can be used to select the list of candidate application instances to include in the SR header.
It has been shown in [164] that selecting two random candidate application instances is enough to
greatly improve load-balancing fairness, with a decreasing marginal benefit when using more than
two instances. Thus, 6LB assigns each new flow to two pseudo-randomly chosen application
instances – by way of a consistent hashing scheme, described in section 7.3.

When the flow reaches a candidate application instance, the corresponding segment in the SR
header indicates that the virtual router may either forward the packet to the next segment, or may
directly deliver it to the virtual interface corresponding to the application instance. This purely
local decision of whether to accept a query is based on a policy shared only between the virtual
router and the application instance, running on the same machine. To guarantee satisfiability,

2Typically, a TCP SYN packet as part of a connection request.
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SC Single-Choice policy (baseline)

SRc
Static acceptance policy (Algorithm 7) with threshold c

e.g., SR4 is the policy of Algorithm 7 with c = 4

SRdyn Dynamic acceptance policy (Algorithm 8)

Table 7.1 – Notation

Algorithm 7 Static Connection Acceptance Policy SRc

for each SYN packet do
b← number of busy threads
if b < c or SegmentsLeft = 1 then

SegmentsLeft← 0, forward packet to application
else

SegmentsLeft← SegmentsLeft− 1
forward packet to next application instance in SR list

end if

end for

however, the penultimate3 segment indicates that the application instance must not refuse the
query. It can be noted that this mechanism is not without similarities with the one introduced
in chapter 3 for achieving zero-loss VM migration, in that the virtual router can decide to “skip”
subsequent segments in the list (in chapter 3, a potential locator for a VM; here, a potential host
for a workload), based on local decisions.

7.2.2 Connection Acceptance Policies

An application agent running within the virtual router decides whether the local application
instance should to accept a flow. The application agent may make this decision based on whatever
information it has locally available – from the operating system, or from real-time application
metrics, if exposed. If information is exchanged with the server application software through
shared memory, this incurs no system calls or synchronization, thereby imposing a negligible run-
time cost.

This section describes two simple policies for deciding whether or not to accept new flows. They
assume that the application uses a standard master-slave thread architecture. Section 7.6.1 will
illustrate the application of these policies, in case of an HTTP server such as Apache. Table 7.1
summarizes the notation used throughout this chapter to designate the different policies.

Static (SRc)

With n worker threads in the application instance, and a threshold parameter c ∈ {0, . . . , n+1},
algorithm 7 describes a policy, SRc, where an application instance accepts the flow if and only if
strictly less than c worker threads are busy (except for the last in the SR list, which must always
accept). Thus, an application instance which is “too busy” will be assigned a connection only if
all previous application instances in the list are also “too busy”. The choice of the parameter c
directly influences the global system behavior: small values of c yield better results under light
loads, and high values yield better results under heavy loads. As extreme examples, when c = 0,
all requests are satisfied by the last application instance of their SR lists; when c = n + 1, all
requests are satisfied by the first: both cases reduce to a random load-balancing scheme. If the
chosen value of c is too small as compared to the load, almost all connections are treated by the
last application instance of their SR lists, and vice-versa.

If the typical load is known, the value of c can be configured statically (by using the results of
the analysis carried out in section 7.5) – otherwise, a dynamic policy can be employed.

Dynamic (SRdyn)

When the typical load is unknown, the policy SRdyn adapts c to maintain a rejection ratio
of each application instance of 1

2 , as detailed in algorithm 8. Previous acceptance decisions are

3The ultimate segment is the VIP.
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Algorithm 8 Dynamic Connection Acceptance Policy SRdyn

accepted← 0, attempt← 0
c← 1 ⊲ or other initial value

ε← 0.1 ⊲ or other increment value

windowSize← 50 ⊲ or other window size

for each SYN packet with SegmentsLeft = 2 do

attempt← attempt+ 1
if attempt = windowSize then

⊲ end of window reached, adapt c if needed and reset window

if accepted/windowSize < 1
2
− ε and c < n then

c← c+ 1
else if accepted/windowSize > 1

2
+ ε and c > 0 then

c← c− 1
end if

attempt← 0, accepted← 0
end if

SRc policy() ⊲ use SRc policy with current value of c
if SRc succeeded then

accepted← accepted+ 1
end if

end for

for each SYN packet with SegmentsLeft = 1 do

SegmentsLeft← 0, forward packet to application
end for

Protocol new flow pinned flow

IPv6 SR insert 72 56

IPv6 SR encap 96 80

IPv6 GRE Tunnel 88 44

IPv6 VXLAN Tunnel 140 70

Table 7.2 – Protocol overhead (in bytes) for different steering mechanisms, towards two (new flow) or
one (pinned flow) application instances.

recorded over a fixed window of queries. When the end of the window is reached, if the number of
accepted queries is significantly below (or above) 1

2 , the value of c is incremented (or decremented).

7.2.3 Protocol Overhead

Inserting an IPv6 SR header to direct a connection through multiple application instances has
an impact in terms of packet size overhead. To quantify this, table 7.2 depicts the number of
extra bytes needed to direct a packet through two (new flow) or one (pinned flow) application
instances, for different protocols. As compared to other equivalent solutions allowing to direct a
request through a set of instances (by sticking several successive tunneling headers), the proposed
approach has the lowest overhead. After flow pinning, the overhead incurred by using SR as a
steering mechanism is of 12 bytes as compared to GRE.

7.2.4 Reliability

The solution described in this section (and more generally in this chapter) focuses on the data-
plane: it is assumed that a controller takes care of installing the mapping between a VIP and the
set of addresses of machines hosting a corresponding application instance. Notably, as in other
distributed load-balancing approaches [162,165], the controller should take care of health-checking
the application instances, and removing them from the set of available instances when they are
found unresponsive.

Since connection establishment packets go through a chain of instances rather than a single
one, the properties of 6LB when facing failures need to be considered. Two scenarios can be
distinguished. First, if a whole machine goes down (critical failure), new flows whose first candidate
application instance is hosted on this machine will fail to be established, and new flows whose
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second candidate application instance is hosted on this machine will fail only if the first instance
rejected them. This incurs a pR% failure overhead as compared to single-choice load-balancing
approaches, where pR is the percentage of connections being rejected by a first instance (e.g., 50%
with SRdyn). However, this happens only during the short amount of time before the controller
detects that the machine is down and updates the backend pool on load-balancers accordingly4.
Second, if an application instance goes down (crashes or becomes unresponsive) but the machine
hosting it still remains up (non-critical failure), the virtual router on that machine will be able to
forward connection establishment packets to the next instance in the SR list, for new flows whose
first candidate instance is failing. Thus, for non-critical failures, 6LB increases the reliability of
the system as compared to single-choice approaches, with a (100− pR)% failure reduction.

7.3 Horizontal Scaling with Consistent Hashing

Elastic scaling of the number of load-balancer instances is required, in order to accomodate
dynamic data center loads and configurations [165]. When a load-balancer instance is added or
removed, the ECMP function (see figure 7.1) performed by the edge router(s) may rebalance
existing flows between remaining load-balancer instances. Thus, it is necessary to ensure that the
mapping from flows to lists of candidate application instances is consistent across all load-balancers.
This is achieved by the use of consistent hashing, depicted in figure 7.2 – which must also be resilient
to modifications to the set of applications instances: adding or removing an application instance
must have minimal impact on the mapping of existing flows.

Consistent hashing for load balancing is used for instance in Maglev [162], which proposes an
algorithm mapping an incoming flow to one application instance. This section introduces a new
consistent hashing algorithm (generalizing the one from Maglev) to allow each flow to map to an
ordered list of application instances. Although 6LB uses 2 choices, the mechanism presented in
this section is agnostic to this value, and is therefore presented for lists of C instances.

7.3.1 Generating Lookup Tables

With M buckets and N application instances, and where N ≪ M , a pseudo-random permu-
tation p[i] of {0, . . . ,M − 1} is generated for each application instance i ∈ {0, . . . , N − 1} – e.g.,
by listing the multiples of the i-th generator5 of the group (ZM ,+). These permutations are then
used to generate a lookup table t : {0, . . . ,M − 1} → {0, . . . , N − 1}C , mapping each bucket to a
list of C application instances, following the procedure described in Algorithm 9. This table t is
then used to assign SR lists of application instances to flows: each network flow will be assigned
an SR list by hashing its network 5-tuple into a bucket j and taking the corresponding list t[j].

Generating the lookup table t is done by browsing through the set of application instances in
a circular fashion, making them successively “skip” buckets in their permutation until finding one
that has not yet been assigned C application instances. Once each bucket has been assigned C
application instances, the algorithm terminates. This process is illustrated in figure 7.4a, for C = 2
choices, with N = 4 application instances and M = 7 buckets. For each application instance i,
the corresponding permutation table p[i] is shown, where a circled number j©n means that bucket
j has been assigned to that application instance at step n. For each bucket j, the lookup table
t[j] returned by the algorithm is also shown. For instance, bucket 3 is assigned to instance 1 (at
step 5) and instance 2 (at step 6), thus the lookup table for bucket 3 is (1, 2). The “skipping”
behavior occurs e.g., at step 9, where bucket 5 is skipped in p[1][j] because it was already assigned
two application instances.

7.3.2 Analysis

Resiliency

Figure 7.4b illustrates how this scheme is resilient to changes to the pool of application instances,
by showing how removing application instance 0 modifies the tables t[j] from the example of

4A simple way to improve the reliability of the system during this short amount of time would be to monitor,
in-band, the responsiveness of the servers (e.g., by gathering information about packet retransmissions or return
traffic), and to rotate the order of SR lists for packets whose first instance is deemed unresponsive. This would
increase reliability while ensuring that the browsed set of instances remains the one returned by consistent hashing.

5Defined as the (i+ 1)-st integer in {1, . . . ,M − 1} which is coprime to M .
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Algorithm 9 Consistent Hashing

nextIndex← [0, . . . , 0]
C ← 2 ⊲ or another size for SR lists

t← [(−1,−1), . . . , (−1,−1)]
n← 0
while true do

for i ∈ {0, . . . , N − 1} do
if nextIndex[i] = M then ⊲ permutation exhausted

continue

end if

c← p[i][nextIndex[i]] ⊲ advance in i’s permutation

⊲ skip buckets for which the SR list is already filled

while t[c][C−1] ≥ 0 do

nextIndex[i]← nextIndex[i] + 1
if nextIndex[i] = M then ⊲ permutation exhausted

continue 2 ⊲ continue the upper loop

end if

c← p[i][nextIndex[i]]
end while

⊲ c is now the first bucket with SR list not filled

choice← 0
while t[c][choice] ≥ 0 do

choice← choice+ 1
end while

⊲ choice is now the first available position in the SR list

t[c][choice]← i
nextIndex[i]← nextIndex[i] + 1
n← n+ 1
if n = M × C then return t
end if

end for

end while

figure 7.4a. Assuming that flows are assigned to the first or second application instance in their
SR lists with equal probability (as with the SRdyn policy), the question is how flows mapped to a
non-removed application instance (1, 2, 3 in this example) are affected by the table recomputation.
For each bucket, one failure is counted for each non-removed application instance appearing in the
lookup table before recomputation, but not after. In the example of figure 7.4, the only failure
is induced by bucket 4, as the second entry of its lookup table, 1, does not appear in its newly
computed lookup table, (3, 2). With 10 non-removed flows, the failure rate in this example is thus
10%.

Intuitively, mapping flows to two application instances, instead of just to one, increases re-
siliency: it is less likely that the SR lists of a bucket before and after recomputation have empty
intersection – for this to happen, a single bucket would need to be re-assigned twice.

The resiliency of algorithm 9 is studied by way of a simulation. An initial lookup table was
computed. Then, k application instances were removed and the lookup table was recomputed –
which allowed computing the previously introduced failure rate. The parameters were N = 1000
application instances, M = 65537 buckets, and 20 experiments were performed, for each value of
k from 0 to 30.

Figure 7.5 reports the failure rate as a function of the number of removed instances. First,
with C = 1 (i.e., mapping each flow onto a single application instance), results identical to in [162,
figure 12] are obtained, confirming that the algorithm reduces to the algorithm from [162] in this
case. Using algorithm 9 for mapping each flow to two application instances (C = 2) shows up to
44% fewer failures (when k = 8) – or, to put it differently, 44% fewer TCP connections being reset.

Fairness

Each application instance picks the same number of buckets (as first or second entry), except
potentially one in the last round. Assuming a probability of acceptance of 1

2 (as with SRdyn),
this guarantees that traffic is equally spread between application instances. Note that a given
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Permutation tables p[i] for each Application Instance i:

j 0 1 2 3 4 5 6

p[0][j] 4©0 5©4 6©8 0 1 2©12 3

p[1][j] 1©1 3©5 5 0©9 2 4©13 6

p[2][j] 5©2 3©6 1©10 6 4 2 0

p[3][j] 6©3 0©7 1 2©11 3 4 5
and lookup table t:

Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,0) (1,2) (0,1) (2,0) (3,0)

(a) Before removal of Application Instance 0

Permutation tables p[i] for each Application Instance i:

j 0 1 2 3 4 5 6

p[1][j] 1©0 3©3 5©6 0©9 2©12 4 6

p[2][j] 5©1 3©4 1©7 6©10 4©13 2 0

p[3][j] 6©2 0©5 1 2©8 3 4©11 5
and lookup table t:

Bucket j 0 1 2 3 4 5 6

SR list t[j] (3,1) (1,2) (3,1) (1,2) (3,2) (2,1) (3,2)

(b) After removal of Application Instance 0

Figure 7.4 – Example of permutation tables p[i] and lookup table t (C = 2,M = 7, N = 4), before and
after removal of application instance 0
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Figure 7.5 – Resiliency of consistent hashing to application instance removals: 1 choice (no SR) vs 2
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application instance is not assigned the same number of first-choice buckets and second-choice
buckets; this is nonetheless compensated by the fact that application instances do balance the load
between themselves – this is evaluated in section 7.6.2.

Complexity

If permutations p[i] are randomly distributed, this algorithm is a variant of the coupon collector’s
problem, and is expected to terminate in M logM +O(M) steps for C = 1 [187], and in M logM +
M log logM + O(M) steps for C = 2 [188]. Hence, choosing two (rather than one) application
instances requires only 1 + log logM

logM ≤ 1.368 times more steps.

In comparison to the näıve algorithm consisting in building two uncorrelated lookup tables for
the first and second application instances in the SR list, the benefit of using Algorithm 9 is twofold:
the generation time is smaller, and jointly building the two entries make the scheme more resilient
to changes as shown in figure 7.5.
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State
Incoming SR function

SR functions added
Next state

LB LISTEN

SYN from client

m1.connectAvail(ℓ1)
m2.connectForce(ℓ1)

HUNTING

LB LISTEN

data from client

m1.recoverStickiness(ℓ1)
m2.recoverStickiness(ℓ1)

HUNTING

HUNTING

SYN from client

m1.connectAvail(ℓ1)
m2.connectForce(ℓ1)

HUNTING

HUNTING
createStickiness(m)

remove SR header
STEER(m)

STEER(m)
data from client

s.ackStickiness(ℓ1)
STEER(m)

STEER(m)
removeStickiness(m)

remove SR header
LB LISTEN

after 10 sec

Table 7.3 – Handshake protocol state machine for a given flow, at a load-balancer ℓ1

7.4 In-band Stickiness Protocol

A load-balancer instance should, for each flow it handles, have knowledge of the application
instance which has accepted the flow. First, this allows packets to be directly directed to the
handling instance, without hopping through the chain of candidates (thereby reducing triangular
traffic). Second, this ensures that, when the consistent hashing table is recomputed (e.g., due to
changes in the pool of applications), existing connections are protected against potential changes
in the lookup table.

Thus, a signaling mechanism is required between the load-balancer and the application in-
stances. Four properties should be satisfied: (i) no external control traffic should be generated,
(ii) deep packet inspection should be minimized, (iii) incoming packets should go directly to the
application instance handling the flow, and (iv) outgoing packets should not transit through the
load-balancer. The latter property, called Direct Server Return (DSR) and introduced in [162,165],
is crucial to the scaling of the load-balancer software: it enables it to treat only client-incoming
packets, which are often more lightweight than server-emitted packets (acknowledgements vs data
packets).

To satisfy (i) and (ii), SR headers are inserted into packets part of the accepted flow – i.e.,
a set of SR functions are used for communicating between the load-balancer and the application
instance. Objective (iii) is accomplished by having the appliation instance signal to the load-
balancer when it has accepted a flow (by adding an SR header to, typically, the TCP SYN+ACK),
and (iv) by making other traffic (packets other than, typically, the TCP SYN+ACK) bypass the
load-balancer and be sent directly from the application instance to the client.

7.4.1 SR Functions

SR functions are used to encode actions to be taken by a segment endpoint, directly in the
SR header. This is closely linked to how IPv6 addresses are assigned: since each machine is
assigned a (typically, 64 bit [189]) IPv6 prefix, it is possible to use the lower-order bytes in this
prefix to designate different functions, as recommended by the SR draft specification [50]. These
functions will also depend on the address of the first segment in the SR list (the “sender” of the
function). In practice, when a machine whose physical prefix is m receives a packet with SR header
(x, . . . ,m::f, . . . ), it will trigger a function f with argument x, which will be denoted by m.f(x).
In terms of a state machine, each SR function will thus (i) move the node from one state to another
and (ii) trigger an action on the packet containing the SR function.
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State
Incoming SR function

SR functions added
Next state

LISTEN
connectAvail(ℓ1) (available)

remove SR header
WAIT(ℓ1)

LISTEN
connectAvail(ℓ1) (busy)

forward
LISTEN

LISTEN
recoverStickiness(ℓ1) (not local)

forward
LISTEN

LISTEN
connectForce(ℓ1)

remove SR header
WAIT(ℓ1)

WAIT(ℓ1)
connect[Avail|Force](ℓ1)

remove SR header
WAIT(ℓ1)

WAIT(ℓ1)
data from app

ℓ1.createStickiness(m)
WAIT(ℓ1)

WAIT(ℓ1)
ackStickiness(ℓ1)

remove SR header
DIRECT(ℓ1)

DIRECT(ℓ1)
recoverStickiness(ℓ2) (local)

remove SR header
WAIT(ℓ12)

DIRECT(ℓ1)
ackStickiness(ℓ1)

remove SR header
DIRECT(ℓ1)

DIRECT(ℓ1)
data from app

direct return to client
DIRECT(ℓ1)

DIRECT(ℓ1)
FIN from app

ℓ1.removeStickiness(m)

LISTEN

after 10 sec

Table 7.4 – Handshake protocol state machine for a given flow, at a machine m

7.4.2 Handshake Protocol

When a (TCP) flow is initiated, SR functions are added to the TCP handshake, so as to inform
the load-balancer which candidate application instance has accepted the flow - thus establishing a
handshake protocol between the load-balancer and the application instance handling a flow. This
handshake protocol is formally described as state machines in tables 7.3 and 7.4, and detailed
below:

1. Upon receipt of a flow (typically, a TCP SYN packet) from a client c for an application
whose VIP is v, the load-balancer ℓ1 will insert an SR header (ℓ1,m1::ca,m2::cf, v) comprising
the physical addresses m1,m2 of the machines hosting the two candidate application instances
as given by the hashing function, and the original VIP. The suffix ca in the addresses indicates
a function connectAvail, whereas cf represents a function connectForce. The first application
instance in the list will make a local decision on whether to accept the flow. In case of refusal, the
packet will be forwarded to the second application instance, which will have to forcefully accept
the flow.

2. The (virtual router running in the) machine mi (i ∈ {1, 2}) corresponding to the instance
that has accepted the connection enters a waiting state for this flow. While in this state, it will
temporarily direct traffic from the application towards the load-balancer, so that the latter can
learn which application instance has accepted the connection. To do so, it inserts an SR header
(mi, ℓ::cs, c) in packets coming from the application, where cs is a createStickiness function.

3. Upon receipt of such a packet, the load-balancer enters a steering state, during which traffic
from the client to the application is sent using (ℓ,mi::as, v) as an SR header, as standing for a
function ackStickiness. This permits both steering the traffic directly to the correct application
instance, and acknowledging the creation of a stickiness entry.

4. Then, when (the virtual router running in) mi receives such a packet, it enters a direct
return state for this flow. As mi has acknowledged the creation of the stickiness entry on the
load-balancer, it thus does not need to send traffic through it anymore. Subsequent traffic of this
flow will therefore be sent by mi directly towards the client c, without using SR – thus allowing
DSR.

5. Finally, when (the virtual router running in) mi receives a connection termination packet
from the application (typically, a TCP FIN or RST), it will insert an SR header (mi, ℓ::rms, c),
where rms designates a removeStickiness function. This allows explicitly signaling connection
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termination to the load-balancer. When receiving this packet, the load-balancer will start a small
timer, at the expiration of which it will remove the corresponding stickiness entry – using a small
timer ensures that packets are correctly directed to the rightful application instance while the trans-
port layer connection teardown is happening. In addition to this explicit connection termination
process, periodic garbage collection is used to remove stale entries from the load-balancer.

7.4.3 Failure Recovery

When adding or removing a load-balancer instance, traffic corresponding to a given flow might
be redirected to a different load-balancer instance from the one over which it was initiated.

In order to recover state, when a new load-balancer instance receives a flow for which it does
not have any state, incoming data packets corresponding to an unknown flow are added an SR
header (ℓ,m1::rs,m2::rs, d), where rs is an SR function recoverStickiness. Consistent hashing
ensures that {m1,m2} is the same set as the one used by the previous load-balancer, with high
probability6. When receiving a packet for this SR function, the application instance that, in the
past, had accepted the flow, will re-enter the steering state, so as to notify the load-balancer.
Conversely, an application instance that had previously not accepted the flow will simply forward
the packet to the next application instance in the SR list.

7.5 Performance Analysis

In this section, an analytic model describing the performance of 6LB with the SRc policy
(algorithm 7) is derived. By way of this model, 6LB is compared to a Single-Choice random flow
assignment approach (SC), which reflects the behavior of standard consistent-hashing approaches
(such as Maglev).

7.5.1 System Model

It is assumed that the system contains N application instances, with N → +∞, and that
consistent hashing uses enough buckets such that the SR list associated with a flow is uniformly
chosen amongst the N2 possible lists.

In this section, the expected response time for the static acceptance policy SRc described in
algorithm 7 is derived, for c an integer threshold parameter. While a similar model has been
considered in [190, section 4.4.4], the contribution in this chapter is that metrics of interest to
6LB (namely, the expected response time, the response time with forwarding delay, the fairness
index, the probability of wrongful rejection, the response time distribution, and the reduction in
number of servers) are derived, numerically computed, and validated against a real deployment
experiment.

Incoming flows are assumed distributed according to a Poisson process of rate Λ = Nλ, and
each application instance offers an exponentially-distributed response time7, with a processing rate
µ normalized to µ = 1. For stability, the arrival rate must verify λ < 1. For i ≥ 0, si is the
fraction of application instances for which there are i or more pending flows (with s0 = 1). This
allows writing (as also found in [190]):

{

dsi
dt = λ(1 + sc)(si−1 − si)− (si − si+1), ∀1 ≤ i ≤ c
dsi
dt = λsc(si−1 − si)− (si − si+1), ∀i > c

(7.1)

When i ≤ c, the probability of a flow being sent to an application instance which already handles
(i− 1) other flows (i) directly is (si−1 − si) and (ii) after having being rejected by an application
instance which already handles c or more flows is sc(si−1 − si). This yields a total probability of
(1+sc)(si−1−si). The same reasoning applies for i > c, where the probability of a flow being sent
to an application instance which already handles (i− 1) flows (i ≥ 1) is the probability of having
been rejected by a first application instance already handling c or more flows, before having been
sent to an accepting application instance, yielding sc(si−1 − si). The probability of a flow leaving

6This is not the case only when there is a simultaneous change in the pool of load-balancer instances and in the
pool of application instances, and then only concerns those flows which correspond to consistent hashing failures
and which, according to figure 7.5, amount to a few percents

7That is, the probability of a service lasting less than t is 1− e−µt.
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Figure 7.6 – Performance analysis of 6LB: mean response time E[T ]. SC vs SR2, SR4 and SR8.

an application instance already handling i flows is (si − si+1). Since the per-application-instance
arrival rate is λ and the processing rate is µ = 1, this yields equation (7.1).

To study the behavior of the system once in equilibrium, it is necessary to find a fixed point
to the differential system (7.1). Setting dsi

dt = 0 yields the following system of equations (where
s0 = 1):

{

0 = λ(1 + sc)(si−1 − si)− (si − si+1), ∀1 ≤ i ≤ c

0 = λsc(si−1 − si)− (si − si+1), ∀i > c
(7.2)

For 1 ≤ n ≤ c, summing equation (7.2) over i = n to +∞ gives sn = λ(1+sc)(sn−1−sc)+λs2c ,
or: sn = λ[sn−1(1+sc)−sc]. Since s0 = 1, this gives s1 = λ. More generally, solving this recursion
yields:

sn =
(1− λ)(λ(1 + sc))

n − λsc
1− λ(1 + sc)

, ∀1 ≤ n ≤ c (7.3)

Then, for n > c, summing equation (7.2) over i = n to +∞ gives sn = λscsn−1, i.e.:

sn = (λsc)
n−csc, ∀n ≥ c (7.4)

Plugging n = c into equation (7.3) allows formulating an implicit equation for sc:

sc(1− λsc) = (1− λ)[λ(1 + sc)]
c (7.5)

This polynomial equation can be solved explicitly for c ≤ 5, and numerically otherwise. Using this
solution in equations (7.3) and (7.4) allows obtaining the value of sn for any n, i.e., the distribution
of the number of flows awaiting being handled by an arbitrary application instance.

7.5.2 Expected Response Time

The expected number X of flows in the system can be computed, given that the probability
that an application instance handles n flows is (sn − sn+1), as: E[X] = N

∑+∞
n=0 n(sn − sn+1) =

N
∑+∞

n=1 sn.
According to Little’s law [191], the expected time T spent in the system by a flow is: E[T ] =

E[X]
Λ = 1

λ

∑+∞
n=1 sn. Summing sn, as obtained in equations (7.3) and (7.4), and using equation (7.5)

gives:
c−1
∑

n=1

sn =
λ− λsc(c− 1)− sc

1− λ(1 + sc)
,

+∞
∑

n=c

sn =
sc

1− λsc

Hence:

E[T ] =
1− csc(1− λsc)− λsc(1 + sc)

(1− λsc)(1− λ(1 + sc))
(7.6)
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Figure 7.7 – Performance analysis of 6LB: worst-case response time with delay E[T̂ ]. SC vs SR2, SR4

and SR8.

Figure 7.6 depicts the value of E[T ] for different SRc policies, and for λ ∈ [0, 1). As a reference,
this value is compared to 1

1−λ , the expected response time for SC, when clients are randomly
assigned to one application instance. It can be observed that the SRc policies uniformly yield
an improvement over SC. When c is small, lower values of λ yield the highest gain; when c
is important, higher values of λ yield the highest gain. For example, choosing SR8 offers an
improvement over SR4 only when λ ≥ 0.983, and thus might rarely be suitable.

7.5.3 Additional Forwarding Delay

In cases where the intra-data-center (server-to-server) forwarding delay is significant as com-
pared to the job duration, forwarding a query to the second application instance in an SR list
incurs an additional cost. If δ > 0 denotes the network delay, multiplying this by the probability
of being rejected by a first application instance gives the expected additional delay. Thus, the
response time including delay, T̂ , verifies:

E[T̂ ] = E[T ] + δ × sc (7.7)

The following theorem states the conditions under which SRc does not degrade performance as
compared to SC:

Theorem 7.1. As long as the network delay δ is smaller than the average job duration 1/µ = 1,
the response time including delay with SRc is better than with SC:

E[T̂ ] ≤ 1

1− λ
, ∀δ ≤ 1

Proof. Let c ≥ 1 a threshold parameter, and λ ∈ [0, 1). First, it will be shown that sn ≤ λn for all
n ≥ 0. For 1 ≤ n ≤ c, sn = λ[sn−1 − sc(1 − sn−1)] ≤ λsn−1; for n > c, sn = λscsn−1 ≤ λsn−1. Thus
sn ≤ λsn−1 for all n ≥ 1, and since s0 = 1, it follows by induction that sn ≤ λn.

It remains to show that E[T̂ ] ≤ 1
1−λ

. Let δ ∈ [0, 1], then: E[T̂ ] = 1
λ

∑+∞
n=1 sn + δsc = 1

λ

∑c−1
n=1 sn +

1
λ

sc
1−λsc

+ δsc. Using sn ≤ λn, sc ≤ λc and δ ≤ 1 gives: E[T̂ ] ≤ 1
λ

∑c−1
n=1 λ

n + 1
λ

λc

1−λc+1 + 1 · λc =
1−λc−1

1−λ
+ λc−1

1−λc+1 + λc = 1
1−λ

+ λc−1( 1
1−λc+1 − 1

1−λ
+ λ). Since c ≥ 1, λc+1 ≤ λ2, which yields:

E[T̂ ] ≤ 1
1−λ

+ λc−1( 1
1−λ2 − 1

1−λ
+ λ) = 1

1−λ
− λc+2

1−λ2 ≤ 1
1−λ

, which completes the proof.

Figure 7.7 gives the expected response time including delay, in the “worst-case” in which the
network delay equals the job duration (δ = 1).



7.5. PERFORMANCE ANALYSIS 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
a

ir
n

e
s
s
 i
n

d
e

x

Normalized request rate λ

SC
SR 2
SR 4
SR 8

Figure 7.8 – Performance analysis of 6LB: fairness index F = E[X]2
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Figure 7.9 – Performance analysis of 6LB: probability of wrongful rejection for different SRc policies.

7.5.4 Fairness Index

Jain’s fairness index [192], defined as F = E[X]2

E[X2] ∈ [0, 1], is a measure for how even a load is

distributed in a system: the closer it is to one, the more evenly is the load distributed.
Computing F requires computing E[X2], the second moment of the number of flows in the

system:

E[X2] = N

+∞
∑

n=0

n2(sn − sn+1) = N

+∞
∑

n=1

(2n− 1)sn

Using equations (7.3), (7.4) and (7.5), this yields:

c−1
∑

n=1

(2n− 1)sn =
1

(1−λ(1+sc))2

[

λ2(sc + 1)((c−1)2sc+ 1)

+ λsc(2csc − 3sc + 2c− c2 − 2)− 2csc + λ+ sc

]

,

+∞
∑

n=c

(2n− 1)sn =
sc(c(2− 2λsc) + 3λsc − 1)

(1− λsc)2

Combining those expressions with the expression for E[X] from section 7.5.2 allows to compute F .
Figure 7.8 depicts F , for different SRc policies, and for λ ∈ [0, 1) – and compares with λ

1+λ , the
fairness index for the SC policy. It can be observed that SRc policies provide a better fairness
than the reference SC policy, and that low values of c are more suitable for a low rate of new flow
arrivals whereas high values of c are preferable for higher rates of new flow arrivals.

7.5.5 Wrongful Rejections

As has been shown in section 7.5.3, using the SRc policy yields better performance than
SC, because an overloaded application instance can offload a query to another random instance.
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Figure 7.11 – Performance analysis of 6LB: 90-th percentile of response time. SC vs SR2, SR4 and
SR8.

However, the proposed mechanism is not fully equivalent to the canonical “power-of-two-choices”
scheme [164], wherein the least loaded of two random instances is chosen. Suboptimal decisions
happen when a first instance handling n ≥ c flows rejects the connection to a second instance
with strictly more than n flows. It is possible to estimate the quantity of such wrongful rejections :
the probability of hitting such a pair of instances is (sn − sn+1)sn+1. Using equation (7.4), the
probability pw of wrongful rejection can be expressed as:

pw =

+∞
∑

n=c

(sn − sn+1)sn+1 =
λs3c

1 + λsc
(7.8)

In order to quantify this, figure 7.9 shows the probability of wrongful rejection for different SRc

policies. For example, with SR4, wrongful rejections happen with probability lower than 4.5%
when λ ≤ 0.9.

7.5.6 Response Time Distribution

The model also allows deriving the distribution of the time that a flow exists in the system.
Knowing this distribution allows, for example, characterizing the performance of 6LB for Service
Level Agreement (SLA) metrics, of the form “No more than x% of clients should experience a
response time ≥ y”.
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Figure 7.12 – Performance analysis of 6LB: reduction in number of instances when using SR4 vs SC,
for different 90-th percentile SLAs

The distribution of the time T a flow waits, will be derived by computing its characteristic
function ϕT (θ) = E[eiθT ] (for θ ∈ R). Assume that the system is at its equilibrium given by
equation (7.2), and that application instances use a FIFO policy with exponential response times.
When a flow is being directed to an application instance that is already handling (k − 1) flows
(k ≥ 1), its waiting time will be distributed as the sum of k independent and identically distributed
(i.i.d.) exponential random variables (E1, . . . , Ek) of parameter µ = 1. The characteristic function

of one such variable is E[eiθE1 ] = 1
1−iθ , hence E[eiθT |k − 1 clients] =

(

1
1−iθ

)k

.

When a flow arrives at the system, it will, with probability (1k≤c+sc)(sk−1−sk) = 1
λ (sk−sk+1),

be directed to an application instance which is already handling (k−1) other flows. Based on this,
it is possible to express the characteristic function of the waiting time of an arbitrary flow:

E[eiθT ] =

+∞
∑

k=1

1

λ
(sk − sk+1)

(

1

1− iθ

)k

Using equations (7.3), (7.4) and (7.5), this can be expressed as:

E[eiθT ] =
(1− λ)(1 + sc)

1− λ(1 + sc)− iθ
− sc(1− λsc)

(1− λsc − iθ)(1− λ(1 + sc)− iθ)(1− iθ)c−1
(7.9)

which can be inverted to find pT , the probability density of T , using pT (t) =
1
2π

∫ +∞

−∞
e−iθtE[eiθT ]dθ.

Figure 7.10 depicts the CDF of this probability distribution, for λ = 0.88, and for various SRc

policies. At this high load, the distribution for the SRc policies exhibit lower response times and
less variance as compared to SC.

Integrating this probability density allows finding πx, the x-th percentile of response time,
defined as the number satisfying:

P[T ≤ πx] =

∫ πx

0

pT (t)dt =
x

100
(7.10)

Figure 7.11 depicts π90, the 90-th percentile of response time, for various SRc policies and for

λ ∈ [0, 1), and is compared to ln(10)
1−λ , the same metric for the SC policy. Similarly as in figure 7.6,

the response time with SRc is lower than with SC, and small values of c are more suitable for low
request rates.

7.5.7 Reducing the Number of Application Instances

The developed model allows estimating the gain, in terms of how many fewer application
instances are required to attain a certain SLA, when using 6LB as compared to when using “plain”
SC. Assume that a system faces a daily request rate profile with a peek rate Λ0, and that the
goal is to provide a given SLA µ0 on the 90-th percentile of response time: no more than 10% of
clients should receive a target response time greater than µ0 (i.e., π90 = µ0).
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With a simple SC load-balancer, the system faces a normalized request rate of λ0 = Λ0/N , and

the 90-th percentile of response time is π90 = ln(10)
1−Λ0/N

– thus, requiring deploying N = Λ0

1−ln(10)/µ0

application instances to meet the SLA.
As per equation (7.10), let π(λ) be the function giving the 90-th percentile of response time

π90 as a function of λ, when using 6LB with the SRc policy. In order to meet the SLA, i.e., to
ensure that π(Λ0/N) = µ0, N

′ = Λ0

π−1(µ0)
application instances must be deployed.

Comparing SC and 6LB with SRc yields:

N ′

N
=

1− ln(10)/µ0

π−1(µ0)
(7.11)

Figure 7.12 depicts this reduction in number of application instances, as a function of the target
SLA µ0, between SC and SR4. If the SLA requires that no more than 10% of clients experience
a response time greater than e.g., µ0 = 6, then if that is met by a deployment of e.g., N = 100
application instances when using SC, only N ′ = 71 application instances will be required if using
6LB with the SR4 policy.

7.6 Evaluation

This section describes an evaluation of 6LB on real software. Section 7.6.1 introduces the
implementation and experimental perform; then, section 7.6.2 reports results of tests conducted
on a synthetic workload, and section 7.6.3 on a realistic workload.

7.6.1 Experimental Platform

The experimental platform used for evaluating 6LB is composed of a load-balancer and a server
agent for the Apache HTTP server.

Load-Balancer

The load-balancer performing consistent hashing, SR header insertion and flow steering is
implemented as a VPP plugin [31]. Having kernel-bypass capabilities and embedding an IPv6
Segment Routing stack, VPP is a suitable choice to build a performing implementation. As a
reference, Maglev [162] was also implemented to evaluate the single-choice consistent hashing flow
assignment policy SC.

Apache HTTP Server Agent

A server agent for the Apache HTTP server [193] has been implemented as a VPP plugin,
accessing Apache’s scoreboard shared memory8 to allow the virtual router to access the state of
the application instance. Apache uses a worker thread model: a pool of worker threads is started
in advance, and received queries are dispatched to those threads. Thus, a simple exposed metric
is the state of each worker thread, allowing to count the number of busy/idle threads, and use this
to decide on connection acceptance, using one of the policies described in section 7.2.2.

System platform

The experiments described in sections 7.6.2 and 7.6.3 are conducted on a common platform. An
edge router and two load-balancer instances are deployed as 2-core VMs residing in one physical
machine. N = 48 application instances of an Apache HTTP server reside each in a 2-core VM, all
of which are hosted across 4 physical machines (distinct from the one hosting the edge router/load-
balancers). The edge router is configured to split traffic for the application across the two load-
balancer instances, by way of ECMP, as in figure 7.1. VPP instances running in the edge router
VM, in the load-balancer VMs, and in each of the VMs of the application instances, are on the
same Layer-2 link, with routing tables statically configured. Each physical machine has a 24-core
Intel Xeon E5-2690 CPU.

8This shared memory, internal by default, can be exposed as a named file by specifying the ScoreBoardFile

directive in the server configuration.



7.6. EVALUATION 117

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
)

Normalized request rate ⍴

SC
SR 4
SR 8

SR 16
SR dyn

Figure 7.13 – Connection acceptance policies evaluation: average page load time. SC vs SR4, SR8,
SR16, SRdyn.

The size of the consistent hashing table of the load-balancer instances was set to M = 65536
(except for the experiments of figures 7.17 and 7.18), and the Apache servers were configured to
use the mpm prefork module, each with 32 worker threads and with a TCP backlog of 128.

The tcp abort on overflow parameter of the Linux kernel was enabled, triggering a TCP
RST when the backlog of TCP connections exceeds queue capacity, rather than silently dropping
the packet and waiting for a SYN retransmit. Thus under heavy load, it is application response
delays that are measured, and not possible TCP SYN retransmit delays.

7.6.2 Poisson Traffic

Traffic and Workload Patterns

To evaluate the efficiency of the connection acceptance policies from section 7.2.2 under different
loads, 6LB was tested against a simple CPU-intensive web application, consisting of a PHP script
running a for loop with an exponentially distributed number of iterations, and whose duration is
190 ms in average. Using such a distribution ensures that job durations exhibit reasonable variance
(the standard deviation of the exponential distribution is equal to its mean). A traffic generator
sends a Poisson stream of queries (HTTP requests), with rate λ. A bootstrap step consisted of
identifying λ0, the maximum rate sustainable by the 48-instances farm, i.e., the smallest value of
λ for which some TCP connections were dropped.

Connection Acceptance Policies Evaluation

With ρ = λ/λ0 as the normalized request rate, for 20 values of ρ in the range (0, 1), a Poisson
stream of 80000 queries with rate ρ was injected in the load-balancers, using the policies SR4,
SR8, SR16, and SRdyn. As baseline, the same tests were run with a policy SC where queries
are pseudo-randomly assigned to one application instance, without Service Hunting, using the
single-choice consistent hashing algorithm of Maglev [162].

Figure 7.13 depicts mean response times for each tested request rate and for each policy, and
show that, among those, SR4 yields the best response time profile, up to 2.3× better than SC for
ρ = 0.87. SR8 and SR16 likewise perform better than SC for all loads, but with a lesser impact.
SRdyn offers results close to the best tested static policy. In order to validate the analytical model
introduced in section 7.5, the response time as obtained from equation (7.6) is displayed in dotted
lines alongside the experimental results9: it can be observed that the model accurately fits the
data, as long as ρ < 0.9. After that, the assumptions (steady state, infinite number of servers) do
not hold anymore.

9A fit is performed on SC to rescale the units. The obtained scaling coefficients are then used for all policies.
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Figure 7.14 – Connection acceptance policies evaluation: instantaneous server load, ρ = 0.89. SC vs
SR4.
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Figure 7.17 – Influence of the consistent hashing table size M : SR4, ρ = 0.89.

Figure 7.15 shows the CDF of the page response time for the 80000 queries batch with ρ = 0.89,
for each policy. SC exhibits a very dispersed distribution of response times, whereas the different
SRc policies yield lower, and less dispersed, response times. This can be explained by inspecting the
evolution of the mean instantaneous load (the number of busy worker threads) over all application

instances, as well as the corresponding fairness index:
(
∑48

i=1 xi(t))
2

48
∑48

i=1 xi(t)2
(where xi(t) is the load of

server i at time t), depicted in figure 7.1410. As SR4 better spreads queries between all servers
(the fairness index is closer to 1), and servers are individually less loaded, better response times
result.

For lighter loads, a similar behavior can be observed, except that SRc policies for high values
of c exhibit no benefits as compared to SC. Figure 7.15 shows the CDF of the page load time for
an experiment where ρ = 0.71: SR16 yields no improvement over SC, and SR8 yields a relatively
small improvement, however the SR4 policy provides a substantial improvement in response times
– and SRdyn remains able to successfully match SR4, the best tested static policy.

Reducing the Number of Application Instances

Previous experiments have shown how 6LB is able to yield a reduced page response time, for
a given request rate. Conversely, if an SLA on the target response time is to be satisfied, 6LB
can be used to decrease the number of application instances needed to reach that SLA. In order
to quantify this, a simple experiment has been conducted to find out how many VMs can be shut
off while achieving a pre-defined SLA. Assume that the 48 VMs were deployed with SC to attain
an average response time of 0.58 s, i.e., that the application faces a total request rate of ρ = 0.71
(values taken from figure 7.13). Using the same request rate, a batch of 80000 requests was ran
against less and less VMs with the SR4 policy, until the same average response time was reached.
Figure 7.16 shows the average response time as a function of the number of VMs: with 6LB, 40
VMs are needed to meet the same SLA as compared to 48 VMs with SC – a reduction of 17%.

Influence of the Consistent Hashing Table Size

Using a smaller hash table can be beneficial in environments with tight resources, but at the
cost of evenness in the distribution of the application instances within first segments of the SR
lists (as explained in section 7.3). In order to quantify this, a Poisson stream of 80000 requests
with request rate ρ = 0.71 was sent to the load-balancers against the SR4 policy, using different
hash table sizes. Figure 7.17 shows the average response time as a function of the table size used
(tables have sizes 2k for performance reasons). The response times are almost identical for high
table sizes, with a noticeable influence when M ≤ 1024. Also, except when M ≤ 128, the average
response time stays lower than when using the SC policy with the same rate.
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Figure 7.19 – SYN → SYN-ACK latency. SR4, ρ = 0.71.

Consistent Hashing Resiliency

The resiliency of the consistent hashing mechanism introduced in Algorithm 9 in real conditions
is evaluated through a simple experiment, where a simultaneous change in the application instances
pool and in the load-balancer pool is introduced. With M = 4096 buckets in the consistent hashing
tables, 1000 long-lived flows are injected in the system and handled by the first 6LB instance. Then,
x application instances are removed, while at the same time the ECMP router is reconfigured to
use the second 6LB instance. The number of connection resets is recorded for SR8 and SC, and
depicted in figure 7.18 for several values of x (averaged over 10 experiments). 6LB increases the
resiliency over SC (as described in section 7.3.2): apart from “unavoidable” resets corresponding
to connections that were pinned to a removed instance, no more than 2% of extra connections were
reset by 6LB, as compared to 4% with SC.

SYN → SYN-ACK Latency

In order to quantify the additional forwarding latency induced by 6LB, figure 7.19 depicts
the SYN → SYN-ACK latency as seen by the client for SR4 and SC, for the experiment where
ρ = 0.71. As compared to SC, with 6LB, the SYN packet can be forwarded to an extra candidate
instance, and the SYN-ACK packet must be forwarded through the load-balancer. Overall, this
increases the median latency by 69 µs. Restricted to those connections that are accepted by the

10These values have been smoothed through an Exponential Window Moving Average filter, of parameter α =
1− exp(−δt) where δt is the interval of time in seconds between two successive data points.
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Figure 7.20 – Average page load time for centralized policies

second candidate in the SR list (corresponding to 38% of the 80000 queries in this experiment), the
median latency is increased by 57 µs. For connections accepted by the first instance, the median
latency is increased by 32 µs.

Comparison against Centralized Policies

Centralized load-balancing policies do not offer the resiliency of consistent hashing approaches,
but in exchange provide more fairness. In order to position 6LB as compared to this class of
load-balancers, two centralized policies are evaluated: (i) Round-Robin and (ii) weighted Round-
Robin with feedback [173]. With the latter policy, feedback is obtained by polling the load of each
application instance every 200 ms (over an out-of-band TCP channel), before adjusting the weight
of the instance in the Round-Robin algorithm accordingly11. Figure 7.20 depicts the average page
load time as a function of the request rate ρ. Results show that Round-Robin provides more
fairness than single-choice consistent hash, but is outperformed by SRdyn (with equivalent results
for light loads ρ ≤ 0.7). For heavier loads, the feedback policy slightly improves performance over
Round-Robin, but remains outperformed by SRdyn: this shows the benefit of using instantaneous
information rather than relying on periodic feedback.

Influence of the Variance of Service Times

To understand the influence of the variability of job service times, an experiment is conducted,
where job CPU times distributions have different variances. To that purpose, the previously used
exponential distribution is replaced with several log-normal distributions12. The response times are
set to have the same median as previously, but different variance parameters, allowing to evaluate
from constant to very skewed response times. Figure 7.21 depicts the mean response time as a
function of the coefficient of variation13 of service times, for a Poisson stream of 80000 queries at
rate ρ = 0.71, against SRdyn, SC, and Round-Robin.

In the extreme case where response times are constant, Round-Robin performs the best (as
instances will have totally processed a query before being assigned a new one) and 6LB performs
better than SC. Indeed, with single-choice consistent-hashing queries can be placed on a server that
is already busy (if “unlucky once”), whereas 6LB needs to be “unlucky twice” for this to happen.

11The weight w is adjusted with w = 0.1 + 0.9 exp(−8× (b/32)2), where b is the current number of busy worker
threads.

12Log-normal distributions are a simple class of positive-valued distributions with a parameter influencing the
variance. A log-normal distribution with parameters µ, σ has density 1

xσ
√
2π

exp[−(log x − µ)2/(2σ2)], median eµ

and variance (exp(σ2)− 1) exp(2µ+ σ2).
13The coefficient of variation of X is the standard deviation of X divided by its average.
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Figure 7.21 – Average page load time for different variances of job times, ρ = 0.71.

When the skewness of job service times increases, 6LB’s use of local information becomes a greater
and greater advantage, and it eventually shows the best performance among all approaches.

7.6.3 Wikipedia Replay

To evaluate the efficiency of 6LB when exposed to a realistic workload, an experiment has been
constructed to reproduce a typical (and, popular) Web-service. Thus an instance of MediaWiki14

(version 1.28), as well as a MySQL server and the memcached cache daemon, were installed on each
of the 48 application instances. The wikiloader tool from [194], and a dump of the database of the
English version of Wikipedia from [195], were used to populate the MySQL databases, resulting in
each instance containing an individual replica of the English Wikipedia.

Traffic and Workload Patterns

A traffic generator, able to replay a MediaWiki access trace and to record response times was
developed, and experiments were run using 24 hours of traces from [195]. These traces correspond
to 10% of all queries received by Wikipedia during this timeframe, from among which only traffic
to the English Wikipedia was extracted and used for the experiment.

A first experiment was to size the server farm, i.e., to identify the smallest number of application
instances necessary to be able to serve queries while exhibiting reasonable response times. With
28 instances, the median response time during peak hours is smaller than 400 ms: the remainder
of this section will assume this size for the server farm.

Connection Acceptance Policies Tested

Given the superior performance of SR4 and SRdyn in the experiments from section 7.6.2, the
24-hour trace was replayed against both SR4 and SRdyn, and client-side response times were
collected. As a baseline, the trace was also replayed against the reference SC policy.

The experiment allowed classifying queries into two groups: (i) requests for static pages, which
are not CPU-intensive, and for which response times were of the order of a millisecond, and (ii)
requests for wiki pages, that trigger memcached or MySQL and thus are more CPU-intensive. 6LB
was found to offer only a small improvement over SC for static page response time (figure 7.24,
top). However, the load times of wiki pages15 exhibited interesting differences.

Figure 7.22 depicts the wiki page request rate and the median wiki page load time for the three
tested policies during the 24h replay (data has been binned in 10 minutes slots). It can be observed
that at the off-peak period around 8:00 UTC, when the system was lightly loaded and subject to a

14https://www.mediawiki.org/wiki/Download
15Those pages were identifiable by the string /wiki/index.php/ in their URL.

https://www.mediawiki.org/wiki/Download
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Figure 7.22 – 6LB Wikipedia replay: query rate and median wikipage load time
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Figure 7.23 – 6LB Wikipedia replay: decile 1, . . . , 9 of wikipage load time

request rate of around 110 pages per second, SC and SR4 yielded similar performance, and SRdyn

exhibited even lower response times. As the request rate increases, using the application-unaware
SC policy yielded notably increased page load times – whereas when using SR4 or SRdyn, a
comparably much smaller increase in page load times incurred.

Experimental Results

To understand the response time variability over 24 hours, figure 7.23 depicts deciles 1-9 of
the wiki page load time distribution, for each 10 minutes bin. Again, SR4 and SRdyn show less
variability under higher loads than does SC. Among SR4 and SRdyn, the latter has the lower
variability under lighter loads, but is outperformed under higher loads.

Finally, as an indicator of “global good behavior”, figure 7.24 (bottom) depicts the CDF of
the wiki page load times over the whole day. Overall, the median response time went from 0.22 s
with SC to 0.18 s with SR4 and 0.16 s with SRdyn. Furthermore, the tail of the distribution is
steeper when using 6LB, with the 90-th percentile going from 0.67 s with SC to 0.32 s with SR4

and 0.31 s with SRdyn.
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Figure 7.25 – Upstream packet forwarding rate evaluation: 6LB vs single-choice consistent-hashing, using
a single CPU core.

7.6.4 Throughput Evaluation

The advantages provided by 6LB in load-balancing fairness come at the cost of some overhead
as compared to single-choice load-balancing approaches, notably due to maintaining flow state and
performing IPv6 SR header insertion. To understand the impact of 6LB in terms of CPU over-
head, the packet-forwarding performance of the VPP implementation introduced in this chapter is
evaluated. Maglev [162] with GRE encapsulation has also been implemented as a VPP plugin, and
serves as a reference point. Evaluation was conducted on a single core of a machine running an
Intel E5-2667 CPU at 3.2 GHz, with an Intel X710 10 Gbps NIC. The load-balancer was manually
initialized to install a pre-determined number of flow entries, and a packet generator (sitting on
another machine on the same Ethernet link) was set to send TCP ACK packets corresponding to
these flows, at line rate. Packets were set to return to the packet generator, and the number of
packets effectively forwarded by 6LB was recorded – allowing to determine the maximum forward-
ing capability of the implementation, for upstream traffic. ACK packets were used rather than
SYN, as they are expected to represent the majority of the upstream traffic.

Figure 7.25 depicts the achievable forwarding rate (in millions of packets per second, Mpps), as a
function of the number of flow entries installed. Two main results are to be noted. First, the kernel
bypass and vectorization capabilities of VPP make it very efficient for load-balancing (be it single-
choice or 6LB), with a raw forwarding capability of around 8 Mpps with one CPU core – whereas
[162] reports 2.7 Mpps for the kernel bypass implementation of Maglev, and 0.5 Mpps without
without kernel bypass. When the number of flows reaches approximatively 105, the performance
of both implementations degrades, as the flow table cannot reside entirely in the CPU cache.
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Second, it can be observed that 6LB incurs only 8% CPU overhead as compared to the load-
balancer reference implementation. This overhead can be explained by the greater complexity of
the per-packet operations, and the fact that the hash-table for flow state needs to handle collisions
– whereas the one from the reference load-balancing plugin does not. Yet, this CPU overhead
remains relatively negligible, and the additional 8% resources that might need to be deployed to
use 6LB should be largely compensated by the fact that less application instances need be deployed,
due to the greater fairness induced (as shown in section 7.6.2).

7.7 Summary of Results

This chapter has introduced 6LB, an innovative network service offering flexible, scalable, re-
liable, distributed, application-aware, but at the same time application-agnostic and application-
protocol-agnostic, load balancing.

This is accomplished by an architecture in which (i) load-balancers use an extended consistent
hashing algorithm to map incoming flows onto a set of candidate application instances, (ii) to
offer – not impose – these network flows to the candidate application instances, leaving them
the decision of whether or not to accept a flow. Once an application instance has accepted a
flow (iii) data packets of no interest to the load-balancer are sent directly from the application
instance to the client. When a network flow is reassigned to another load balancer (e.g., if a load
balancer is added to or removed from the system), this will be detected, and in-band signaling
will reestablish the necessary state in this new load-balancer for continued operation, ensuring (iv)
that a traffic flow between a client and an application instance becomes pinned to that application
instance, regardless of changes to the load balancing infrastructure. The use of Segment Routing,
specifically SR Functions, allow defining and implementing this as a network service, i.e., entirely
below the application layer.

This chapter has also introduced a simple two-choice random assignment policy (motivated by
the concept of power of two choices), combined with a static or dynamic query acceptance policy.
These policies were compared to a näıve one-choice random query dispatch policy, by way of an
analytical model, as well as an evaluation on a 48-servers deployment. Evaluation of those policies,
conducted using a simulated Poisson workload as well as on a Wikipedia replica, shows that 6LB
is able to better spread the load between all application instances than single-choice consistent-
hashing load-balancers. Evaluation of the packet-forwarding performance of the implementation
shows that these benefits are attained at a negligible cost in terms of CPU overhead.

Results from this chapter have been published in [83, 84]. A subsequent study on how to use
the data-plane of 6LB to improve cache hit-rates in Content Distribution Networks (CDNs), by
performing popularity estimation in the data-plane, has been published in [196].
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Chapter 8

Stateless Load-Aware Load
Balancing in P4

In data-center and cloud architectures, as was detailed in chapter 1, workload are virtualized,
with applications replicated among multiple application instances, each capable of independently
serving incoming queries [2,3,197]. An important functional part in these architectures is the load-
balancer (LB), dispatching incoming queries amongst application instances. To make the load-
balancer “invisible”, a Virtual IP Address (VIP), shared by all application instances providing the
same service, is advertised to the Internet in place of the address of the load-balancer, requiring
the load-balancer to provide per-connection consistency (PCC), i.e., ensuring that traffic from a
connection (typically identified by its network 5-tuple: source & destination addresses, L4 protocol,
source & destination port) is always directed to the same application instance. Näıve load balancing
use Equal Cost Multi-Path (ECMP) [161] to map connections to application instances, using a hash
function and a modulo operation.

8.1 Statement of Purpose

A drawback of using ECMP for load-balancing is the lack of resiliency to changes to the ap-
plication instance set, which causes the modulus in the ECMP operation to change and most
connections to be redistributed across application instances, thus breaking PCC and causing con-
nection resets. Consistent hashing [166–168] attempts to address this, by providing a more resilient
mapping of connections across application instances [162, 165] through maintaining an intermedi-
ate table which, with high probability, yields a persistent mapping of the 5-tuple space to the
set of application instances, even when faced with changes in the application instance set. Ma-
glev [162] uses consistent hashing with per-connection state to maximize the probability of PCC:
a connection breaks only when both (i) per-connection state is removed (if memory is exhausted,
for instance due to a denial-of-service attack – or if traffic is rebalanced to a new LB instance) and
(ii) consistent-hashing changes the mapping of the connection to a different application instance
(if there is a change in the set of application instances, which should affect only a small number of
connections).

The pseudo-random nature of consistent hashing assigns queries to application instances regard-
less of their actual load state [162]. While this does not pose any problem for non-CPU-intensive
applications (e.g., serving static Web pages), performance may degrade for CPU-intensive applica-
tions (e.g., data processing), for which the number of concurrently served queries per application
instance must be minimized. Assigning queries to the least loaded from among two randomly
chosen application instances (rather than to one randomly chosen application instance) was shown
in [164] to improve load-balancing fairness. Based on this, 6LB, introduced in chapter 7, combines
a Maglev-like consistent hashing with assigning connections to set of two application instances,
which decide amongst themselves which will accept the connection. This is achieved by forwarding
connection request (SYN) packets using Segment Routing (introduced in section 1.2.1) and then
by maintaining state in the LB as to which instance has accepted the connection.

The need to maintain per-flow connection-state make Maglev and 6LB difficult to implement
on programmable hardware devices, whereas it is known that hardware-based load-balancers offer

127
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a potential performance benefit [169, 198, 199]. Beamer [199] circumvents this state requirement,
by calling on assistance from the network stack of application instances to maintain PCC. When
the set of application instances changes, and consistent hashing maps a flow to a different appli-
cation instance, Beamer directs packets from that flow to that new application instance, while
also embedding the address of the previously used application instance in the packet header. This
allows the new application instance, in case it does not have connection state for a received packet,
to forward it to the previous instance – somewhat similarly to the recovery mechanism of 6LB
introduced in section 7.4.3.

A shared requirement of [84, 199] is that an application instance is able to direct packets to a
second application instance, when needed. For 6LB, only connection establishment packets (or first
connection recovery packets) are proposed to two application instances, allowing load sharing – at
the expense of state in the LB for forwarding subsequent packets directly to the correct application
instance, using the stickiness mechanism of section 7.4. Beamer offers packets to two application
instances only when there is a change in consistent hashing – but then, does so for all packets in
a flow, to avoid keeping state in the LB.

Thus the question: is it possible to provide a stateless load-balancer that dispatches queries
according to the state of the applications? This requires the LB to be able to (i) send connection
requests through a chain of “candidate” application instances for local connection acceptance
decisions, and (ii) statelessly direct packets in an established flow to the one application instance
which accepted the connection request.

As a possible solution, this chapter introduces SHELL, an application-agnostic, application-
load-aware, stateless load-balancer, which (i) proposes new connections to a set of pseudo-randomly-
chosen application instances, each making a local acceptance decision, and (ii) “marks” subsequent
packets in a flow so as to allow the load-balancer to direct them to the appropriate application
instance, without requiring the load-balancer to maintain per-connection-state.

The statelessness of the load-balancer makes it a candidate for an implementation in a hardware
platform. Thus, this chapter proposes a prototype P4 [200] implementation of SHELL targeting the
NetFPGA SUME [201] platform using the P4-NetFPGA [202] framework, as well as an extensive
performance evaluation of the P4 implementation and of the stable hashing algorithm.

8.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 8.2 provides an overview of
SHELL, with section 8.3 detailing key design aspects. The P4-NetFPGA implementation of the
load-balancer is detailed in section 8.4, followed by a performance evaluation in section 8.5. Re-
siliency of consistent hashing is evaluated in section 8.6, before section 8.7 concludes this chapter.

8.2 Overview

SHELL consists of 3 main components: a control plane, a P4-based load-balancing data-plane,
and a server agent.

The control-plane constructs two tables (see section 8.3.1): (i) a consistent hashing table,
used to direct new connection request packets (e.g., TCP SYNs) to a set of candidate application
instances, which improves fairness, and (ii) a choice history table, for directing subsequent packets
in a flow (e.g., TCP ACKs), which improves resiliency.

The P4 load-balancer uses 5-tuple hashing to map each new connection request to a list of
candidate application instances from the consistent hashing table provided by the control-plane.
Segment Routing is then used to direct such packets through the selected list of application in-
stances, until one accepts the connection (note that the last application instance in the set must
always accept), as in 6LB (chapter 7). Then, Ci, the position in the list of the application instance
which accepted the connection, is communicated back to the client (see section 8.3.2), which in
turn includes it in all further packets from the client to the load-balancer. This enables the P4
load-balancer to send these packets directly to the application instance handling the connection.
When a change in the set of application instances causes modifications to some of the consistent
hashing buckets, changes are saved in a history. The P4 load-balancer then directs (using SR)
subsequent packets to the current and previous application instances associated with the value Ci
received in the packets.
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Figure 8.1 – SHELL overview

Finally, the server agent (i) accepts new connection requests or forwards them to the next
candidate application instance, and (ii) forwards further packets until reaching the application
instance that accepted the connection. This server agent is implemented as a Linux kernel module;
the details hereof are out-of-scope for this chapter.

An exemple execution is illustrated in figure 8.1. (a) A SYN packet is directed through c = 2
candidate instances (c1, c2). In this example, the two instances are hosted on machines m2,m1,
and the second candidate (hosted on m1) accepts the connection. This choice is reported in the
covert channel of the SYN-ACK packet. More precisely, the covert channel encodes a label C2
indicating that the second candidate accepted the connection (rather than encoding the full value
m1 of the address corresponding to this choice), thus carrying only one bit of information. (b)
Subsequent packets from the client are directed by the LB to the correct machine m1, by looking
up the machine corresponding to the covert channel value C2 in a consistent hashing table. (c)
Upon reconfiguration of the pool of instances, with high probability the assigned instance is not
modified in the consistent hashing table, due to the resiliency property of consistent hashing. (d)
A reconfiguration modifies the candidate list to (ct1, c

t
2) = (m3,m2). SHELL then uses the history

matrix to go through (the machines hosting) the previous instances that used to be the c2 for this
bucket – in this example, (ct2, c

t−1
2 ) = (m2,m1).

8.3 Description

In this section, c is the number of candidate application instances through which connection
requests are directed, B the number of buckets used in consistent hashing, and h the “depth”
of the consistent hashing “history matrix” maintained for a bucket t[b] (an example of t[b] for a
bucket b is shown in table 8.1). Finally, c covert channel labels C1, . . . , Cc are defined, where label
Ci indicates that “at the time of connection establishment, this connection was accepted by the
i-th application instance in the SR list embedded in the packet”.

The behavior of the P4 load-balancer and of the application instance depends on which packet
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Algorithm 10 Consistent hashing history table construction

⊲ update version numbers

for b ∈ {0, . . . , B−1}, i ∈ {h−1, h−2, . . . , 1}, j ∈ {0, . . . , c−1} do
t[b][i][j]← t[b][i− 1][j]

end for

⊲ build new consistent hashing table

for b ∈ {0, . . . , B−1}, j ∈ {0, . . . , c−1} do
t[b][0][j]← consistentHashing(b, j)
⊲ use algorithm 9

end for

⊲ remove duplicates

for b ∈ {0, . . . , B−1}, j ∈ {0, . . . , c−1} do
if t[b][0][j] = t[b][i][j] for some i 6= 0 then

delete t[b][i][j] and shift t[b][i+ 1, . . . , h− 1][j] upwards
end if

end for

Choice 1 . . . Choice c

Epoch t m3 . . . m4

Epoch t− 1 m2 . . . m13

...
...

...
...

Epoch t− h+ 1 m13 . . . m10

Table 8.1 – Example entry of the history matrix, for a given bucket

is received:

1. A connection request (TCP SYN) received at the LB is hashed, on its 5-tuple, into
a bucket with index b. The first row of the history matrix for b, t[b][0][:], is then used for
generating an SRv6 header with a segment list of (t[b][0][0], . . . , t[b][0][c−1], v), where v is the
original VIP included in the packet. In the example from table 8.1, the inserted SR header
is (m3, . . . ,m4, v).

2. A connection request (TCP SYN) received at an application instance is processed
by the corresponding server agent. The agent examines the local state of the application
(e.g., its CPU load), and determines to either accept the request, or to forward the packet
to the next segment in the SR header, using e.g., algorithm 7 or algorithm 8 from chapter 7.
Note that the last candidate in the list must always accept the connection.

A server agent having accepted a connection will record, for the connection lifetime, its
own index Ci ∈ {C1, . . . , Cc} in the segment list received with the connection request, so as
to be able to signal this to the client, through the covert channel. In the example from
table 8.1 where the inserted SR header is (m3, . . . ,m4, v), if the first candidate (m3) accepts
the connection, the corresponding server agent will record C1 as a covert channel label.

3. When an application instance emits a packet, the corresponding server agent will
embed the recorded label Ci for that connection in the TCP SYN-ACK (and in all future
outgoing packets for that connection), using a covert channel – how this is accomplished is
discussed in section 8.3.2.

4. All subsequent (i.e., TCP non-SYN) packets emitted by the client will automat-
ically encode Ci, since the covert channel is automatically reflected by the network stack of
the client.

5. All subsequent (i.e., TCP non-SYN) packets received at the LB are hashed, on
their 5-tuple, identifying a bucket b. The LB also extracts the label Ci inserted in the covert
channel by the client. The i-th colum of t[b] is then used to generate an SRv6 header with
segment list (t[b][0][i−1], . . . , t[b][h−1][i−1], v).
In the example from table 8.1, if the value in the covert channel is C1, the inserted SR header is
(m3,m2, . . . ,m13, v). This allows the packet to reach m3, where it is the most likely that the
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connection is handled. However, if the history matrix has been updated and the connection
had been opened before that update, it is possible that the flow is not handled by m3. When
this is the case, since m2, . . . ,m13 are also included in the SR header, the packet is directed
through the previous instances corresponding to that bucket and that choice index C1, until
reaching the correct one.

6. All subsequent (i.e., TCP non-SYN) packets received at the application instance
will be examined, and if corresponding connection-state is found, will be processed locally.
Otherwise, such packets are forwarded to the next segment, allowing to try an “older” in-
stance which used to map to the same bucket and label Ci. In the unlikely event that there
is no next segment, the packet is dropped – this corresponds to the case where the history
was not long enough to include the application instance that had accept the connection in
the first place.

8.3.1 History Matrix Computation

First, the same algorithm as in 6LB (algorithm 9) is used to generate, for each bucket b, a
candidate list of application instances ℓ = (m1, . . . ,mc). This list is recorded as the first row of
the history matrix for the bucket: t[b][0][:] = ℓ. When the set of application instances is modified,
the history matrix needs to be modified. Algorithm 10 describes the mechanism used to generate
the history matrix when this occurs:

• First, all entries in the history matrix are offset by one, i.e., ∀b, t[b][i+1][:]← t[b][i][:].

• Then, the new mapping of choice index to candidate application instances is calculated for
each bucket b, again using algorithm 9.

• By design, and as depicted in figure 7.5 and [162, figure 12], consistent hashing will leave
most bucket entries unmodified after reconfigurations of the application pool, i.e., t[b][0][:] =
t[b][1][:] for most b. Therefore, duplicate history entries are removed (last step of algo-
rithm 10), so as to avoid repetitions in the created SR headers, and to span a potentially
longer history of application instances having occupied a bucket.

8.3.2 Possible covert channels

The server-state-aware and stateless load-balancing approach described in this chapter relies on
the application instance being able to instruct clients to include Ci (the position of the application
instance in the segment list at time of connection establishment) in all packets subsequent to the
connection request. This label Ci is then used by the load balancer to direct these packets to the
appropriate application instance.

If it is possible to modify the client networking stack so as to cooperate with the load-balancing
architecture, a simple option would be to embed the full identifier (rather than a label Ci) of the
instance having accepted the connection in packets sent to the client, then reflect this identifier in
the packets sent by the client. This can be achieved with transport protocols such as QUIC [146],
which embed a connection identifier chosen by servers and reflected by clients.

However, for TCP connections, it is necessary to convey Ci from the application instance to
the client, and make the client relay Ci in subsequent packets, without client-side modification1.
This requires using a covert channel from the application instance, through the client, and to the
load-balancer, which the client neither inspects nor interferes with. Approaches accomplishing this
include:

• TCP sequence numbers, which are reflected by endpoints in the acknowledgement field.
Since the initial sequence number is chosen by the server, this allows implementing the
covert channel through the high-order ⌈log2 c⌉ bits of the sequence number. Note that this
method fails for connections whose length outrun 1/c of the sequence number space (i.e.,
232/c bytes), because in this case the high-order bits will be modified in the middle of the

1The rationale for embedding a label Ci (rather than the full application identifier) in the covert channel, is that
it is a more compact representation, requiring only ⌈log2 c⌉ bits. In practice, if c = 2 (as is usual from the “power
of two choices” [164]), only 1 bit is required. If one were to encode the full instance identifier in the covert channel,
this would require ⌈log2 |M|⌉, whereM is the set of machines capable of hosting those instances.
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Figure 8.2 – SHELL P4 data-plane overview

header tcp_opts_24_t {
bit <32> nopnoptypelength1; bit <63> value1; bit <1> potential_cov_channel1;
bit <32> nopnoptypelength2; bit <63> value2; bit <1> potential_cov_channel2;

}
state parse_tcp_opts_24 {

packet.extract(hdr.tcp_opts_24 );
transition select(hdr.tcp_opts_24.nopnoptypelength1) {

32 w0x0101080a : set_covert_channel_24_1; /* NOP NOP TS (type =08, length =0a) */
32 w0x0101050a : parse_tcp_opts_24_2; /* NOP NOP SACK10 (type =05, length =0a) */
default: accept;

}
}
state set_covert_channel_24_1 {

user_metadata.covert_channel = hdr.tcp_opts_24.potential_cov_channel1;
transition accept;

}
state parse_tcp_opts_24_2 {

transition select(hdr.tcp_opts_24.nopnoptypelength2) {
32 w0x0101080a : set_covert_channel_24_2; /* NOP NOP TS (type =08, length =0a) */
default: accept;

}
}
state set_covert_channel_24_2 {

user_metadata.covert_channel = hdr.tcp_opts_24.potential_cov_channel2;
transition accept;

}

Figure 8.3 – Example TCP TLV parsing in the P4 LB, for doff = 11.

connection. In this case, it would be necessary to implement a mechanism to detect when
the high-order bits are about to wrap, as well as a flow table to record flow state when this
happens. Alternatively to recording flow state, the LB could insert an SR list comprising all
c× h segments of the history matrix to perform a recovery through all candidates, but this
would potentially have a high network overhead.

• TCP timestamps, which are also reflected by TCP endpoints. The covert channel can
be carried in the ⌈log2 c⌉ low-order bits of the TCP timestamp, as is done in [203] – and
according to [204,205] this is resilient to middlebox processing. Modifying the timestamp by
at most c−1 units (c=2 usually [164]) will have a negligible effect on RTT estimation.

To avoid using a flow table, SHELL uses TCP timestamps as covert channel for TCP connec-
tions: the server agent of the accepting application instance encodes its index Ci in the low-order
bits of the TCP timestamp – and the LB inspects TCP timestamp sent by clients.

8.4 P4 Load-Balancer Implementation

This section describes the P4 implementation of the data-plane introduced in section 8.3.
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Throughput (Mpps) 59.8

Worst-case latency (µs) 8.96

Table 8.2 – SHELL P4-NetFPGA dataplane performance

8.4.1 Data Plane

The workflow of the P4 implementation of the LB data-plane of SHELL is illustrated in fig-
ure 8.2. It uses three match-action tables, corresponding to (i) segment lists to be inserted into
SYN packets, as given by the first row of the history matrix, (ii) segment lists to be inserted in
non-SYN packets, as given by columns of the history matrix, and (iii) a Layer-2 lookup for output
packets.

Processing a packet starts with parsing its headers. If they do not match the expected format
(e.g., the packet uses UDP), the packet is dropped; otherwise, they are processed by the match-
action pipeline. Both (i) the 5-tuple hash of the packet, computed by way of an external function
from the P4-NetFPGA framework, and, (ii) in case of a non-SYN packet, the covert channel value
as found in the TCP timestamp field (whose parsing is described below), are used as keys to the
match tables, in order to access the corresponding segment list. The segment list is then fed to an
action, which builds the SR header. To complete the match-action pipeline, a match is performed
on the newly-added destination address of the packet (i.e., the first SR segment), which calls an
action making the packet egress through the correct interface. Finally, the de-parsing stage emits
the packet with the newly-built headers.

The TCP timestamp is embedded in an option of the TCP header, and TCP options are
formatted as Type-Length-Values (TLVs) [17] – which makes it impossible to know in advance
where to peek into the packet so as to retrieve its TCP timestamp. For want of a lookahead
function and of variable-length header support in the P4 compiler, only a set of “reasonable options”
is parsed (specifically, SACKs and timestamps, i.e., those that can be found in non-SYN packets
according to [204]). Depending on the length of the TCP header found in the “data offset”
(denoted by doff) field, an option header with the identified possible combinations of TLVs is
parsed, corresponding to lengths doff ∈ {8, 11, 13, 15}. Figure 8.3 depicts an example of such a
parsing, when doff = 11. The bits of the covert channel are then stored into a meta-data field2.
A parameter of interest to the performance of the data-plane is the maximum size of the parsed
TCP header dmax

off : its influence on the performance is evaluated in section 8.5.

8.5 P4-LB Implementation Performance

A key element to the performance of SHELL is the per-packet latency incurred in the P4-
dataplane of the LB. It depends primarily on two factors: (i) the latency incurring when receiving
a packet over an ingress interface, inserting an SR header, and transmitting this (now larger)

2To ensure compatibility with clients not using TCP timestamps, if a SYN packet is missing the TCP timestamp
option (detected by doff ≤ 8), an SR header with only one candidate will be inserted. Lack of a TCP timestamp in
non-SYN packets is then interpreted as a covert channel value of C1.
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Max TCP size LUT LUTRAM FF BRAM

dmax
off = 8 36.9% 19.4% 33.3% 59.3%

dmax
off = 11 40.1% 22.0% 36.4% 63.2%

dmax
off = 13 43.8% 24.9% 40.2% 67.7%

dmax
off = 15 48.7% 28.6% 45.8% 74.1%

Table 8.3 – SHELL P4-NetFPGA dataplane resource usage on a NetFPGA-SUME. (LUT: Look-Up
Tables; LUTRAM: Look-Up Tables used as RAM; FF: registers (Flip-Flops); BRAM: Block RAM.)

packet over an egress interface (section 8.4.1), and (ii) the latency incurring from extracting Ci
from within the TCP timestamp (section 8.3.2).

These factors are evaluated using the P4-NetFPGA framework and the Xilinx Vivado soft-
ware suite, simulating packets going through one interface of a 10G NetFPGA-SUME, and are
documented in this section.

8.5.1 Effect of SR Header Insertion on Latency

For the purpose of the simulations, c = 2 choices were used for SYN packets, and a history of
h = 2 was used for ACK packets, thus SR headers with 3 segments were inserted, increasing the
packet size by 56 bytes between ingress and egress. Feeding ingress packets at maximum line-speed
fills the egress interface queue over time, thus progressively increasing packet forwarding latency –
as depicted in figure 8.4, showing stable results from above 1500 packets. When the egress buffer
is empty, the latency is 2.1 µs, and when the buffer is full the latency oscillates between 8.2 µs and
9.0 µs. Thus, for subsequent simulations, batches of 4800 packets are injected at line-rate on the
ingress interface.

The batch of packets consists of a mixture of SYN packets, ACK packets with odd TCP
timestamps and ACK packets with even TCP timestamps. Table 8.2 reports the throughput and
worst-case latency obtained: SHELL, comparable to Beamer [199], can sustain 60 Mpps, i.e., 22×
as much as what is reported in [162] for the single-core software implementations of Maglev, while
also providing application instance load-awareness.

8.5.2 Effect of TCP Parsing on Latency and FPGA Resources

As explained in section 8.4, the TCP timestamp option is parsed by matching a predefined set
of option headers, thus the greater dmax

off (maximum admissible size of parsed TCP headers), the
more program branches – and the greater the latency. This is evaluated by testing different values
of dmax

off ∈ {8, 11, 13, 15}, and depicted in figure 8.5. The latency varies from 1.8 µs (dmax
off = 8) to

2.1 µs (dmax
off = 15) for an empty egress queue, and its average after the egress queue has filled up

goes from 7.7 µs (dmax
off = 11) to 8.5 µs (dmax

off = 15).
This allows noting that, in a controlled environment (e.g., a data-center, where SHELL typically

would be deployed), where a strict set of TCP options can be enforced, it is possible to trade off
parsing safety against reduced latency. Conversely, parsing more potential options increases the
amount of logic consumed on the FPGA. As reported in table 8.3, which depicts the resource usage
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Figure 8.6 – SHELL consistent hashing evaluation: probability for a connection started at time t = 0 to
be reset after n backend reconfigurations. 500 application instances, c = 2 choices. Backend reconfiguration
rate model from [198,206].

on the FGPA for different values of dmax
off , this can increase LUT (Look-Up Tables, implementing

the FPGA logic) usage by up to one third.

8.6 Consistent Hashing Resiliency

The resiliency of the consistent hashing algorithm detailed in 8.3.1 is evaluated by way of
simulations. Long-lived connections are particularly vulnerable to application instance reconfigu-
rations – thus, as a worst-case scenario, simulations using infinite-length connections, and subject
to successive application instance removal/insertions, are performed; each simulation is repeated
5 times.

For a random connection, assuming that it was uniformly drawn from among the B× c buckets
and choices possible, the probability that it is reset3 after n application instance reconfigurations
is depicted in figure 8.6a (top), which shows the impact of the history depth h, and figure 8.6b

3A connection assigned to a bucket/choice pair is deemed reset after n reconfigurations if the application instance
to which it was initially assigned no longer appears in the corresponding history table.
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(top), which shows the impact of the number of buckets B.
In realistic scenarios, application instance reconfigurations are expected to be rare, and connec-

tions are unlikely to last for more than a few application instance reconfigurations – at most. The
bottom graphs of figures 8.6a and 8.6b depict the connection reset probability using the connection
duration distribution model from [206, Figure 7.a] (where connections have a median duration of
365 ms), and with the application instance reconfiguration rate distribution taken as the high-
est 1% rates over a month for 100 clusters from [198, Figure 2] (in this worst-case distribution,
reconfigurations have a median rate of 13.5 min−1).

In these conditions, less than 1% of the connections were lost when using SHELL with a non-
void history (h > 1). In comparison, without history (i.e., h = 1, as would be the case in Maglev
and 6LB), more than 5% of the connections were lost.

8.7 Summary of Results

This chapter has introduced SHELL, an application-agnostic load-balancing architecture which
combines application load awareness (by using a power-of-choices scheme upon connection estab-
lishment), statelessness (by using a covert channel to indicate which of the candidates had accepted
the connection), and resiliency (by using consistent hashing and versioning). Being stateless makes
SHELL suitable for a hardware implementation, as demonstrated in this chapter through proto-
type development using the P4-NetFPGA framework. An evaluation of throughput and latency
of this prototype implementation shows that the attainable performance is equal to that of other
hardware implementations, while providing application-awareness and therefore improving load-
balancing fairness. Further, simulation of the consistent hashing resiliency shows that the number
of long-lived connections dropped, even in worst-case scenarios, is negligible.

Results from this chapter have been published in [85].



Chapter 9

Joint Auto-Scaling and
Load-Balancing with Segment
Routing

Virtualization and cloud architectures, wherein different tenants share computing resources to
deploy their workloads, reduce the possible granularity of task allocation in data centers [3]. To
optimize cost and energy, applications can be (i) replicated among multiple instances running in
containers or virtual machines (VMs) [1, 2], and (ii) automatically scaled up or down in order
to meet a given Service Level Agreement (SLA) [207]; this, to trade off cost and user quality of
experience. Two functions serve this purpose: (i) a load-balancer, which dispatches queries onto
identical instances, and (ii) an autoscaler, which monitors application instances to scale up or down
the number of application replicas.

A main challenge for network load-balancers is to provide performance and resiliency, while tak-
ing application state into account. Some architectures, like Equal Cost Multi-Path (ECMP) [161]
or Maglev [162], distribute flows among instances pseudo-randomly, allowing forwarding packets
without terminating Layer-4 connections, and thus providing a high throughput. The use of consis-
tent hashing (as in [162]) also allows for resiliency, in case an existing flow is handed over to another
load-balancer. Such architectures, nonetheless, assign flows to instances regardless of their load
state – but it has been demonstrated [164] that considering application load can greatly improve
overall performance. Other load-balancing architectures do take application state into account, by
terminating Layer-4 connections [185], and/or using centralized monitoring [172] – thus incurring
a performance overhead and degrading resiliency.

Similarly, autoscalers use centralized monitoring, with an external agent gathering load metrics
from all application instances and collapsing these into a decision [207]. This can therefore some-
times cause decisions to be made on out-of-date information. Furthermore, such agents typically
collect external metrics (e.g., CPU load of a VM as seen by the hypervisor), ignoring application-
provided metrics that could possibly be more suitable to make scaling decisions.

9.1 Statement of Purpose

The purpose of this chapter is to introduce a unified architecture for load-balancing and au-
toscaling, and to analyze and quantify its characteristics. The proposed architecture supports
application-load-aware load-balancing and autoscaling decisions, thus eliminating the need for
centralized monitoring and decision-taking. To decrease operational overhead, the proposed archi-
tecture operates entirely within the network layer (Layer-3), removing the need from terminating
or proxying network connections. Using the dataplane of 6LB (introduced in chapter 7), queries
are directed with SR through several application instances, each able to make a local decision to
accept or refuse the query, and the last one able to make autoscaling decisions. In sum, and as
described in section 9.2, the local state of the applications is used to make both load-balancing
decisions and autoscaling decisions. The contributions of this chapter are twofold:

1. An analytical model of the behavior of the proposed load-balancing policy for a chain of n
servers is formulated. The model is solved by extending the Recursive Renewal Reward (RRR)

137
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technique [208] to n-dimensional Markov chains, and numerical results are obtained when the state
space is reasonably small.

2. The proposed load-balancing and autoscaling architecture is implemented within a virtual
router (VPP [31]), and tested against traces of a real workload, allowing to confirm that the
properties of the system hold in real environments.

9.1.1 Related Work

This section reviews the literature on load-balancing and autoscaling, before presenting a math-
ematical framework (the Recursive Renewal Reward technique) used throughout this chapter. Seg-
ment Routing has been introduced in section 1.2.1, and work related to load balancing has been
reviewed in section 7.1.1.

Autoscaling

Methods to provide autoscaling have been classified by [207] as reactive and proactive. Reac-
tive methods consist of regularly gathering measurements, and taking actions accordingly when
thresholds are violated. For instance, in [209] up/downscaling is triggered when bounds on some
observed metrics are violated; [210] has a similar approach with dynamic threshold adjustment.
Such approaches incur an overhead due to the gathering of statistics, and a time gap between
detection of violations and appropriate reaction.

Conversely, proactive approaches consist of anticipating changes and acting correspondingly.
Machine learning techniques are used in [211] to classify workloads by their resource allocation
preferences, and [212] uses control theory to track CPU usage and to allocate resources accordingly.
While solving the issue of timeliness, proactive approaches suffer the need to collect statistics and
perform centralized computations. This chapter avoids this by enabling applications instances to
make local autoscaling decisions.

Recursive Renewal Reward

The Recursive Renewal Reward technique (RRR) [208] has been introduced as a means to
extract metrics from a class of Markov chains. It consists of identifying a home state S0 and a
metric of interest M(t) (the reward). Then, this allows evaluating the expected value of M by
computing its average earning rate over a cycle from S0 to itself, divided by the average duration
of the cycle:

E[M ] =
E[
∫

S0→S0
M(t)dt]

E[
∫

S0→S0
1dt]

(9.1)

RRR applies to bi-dimensional Markov chains with a one-dimensional repeating pattern, in which
case computing the average earning rate of the reward reduces to solving a finite number of equa-
tions, by restricting to the border row that generates the pattern. RRR has been applied to various
problems, from vehicular networks [213] to query duplication in data centers [214].

9.1.2 Chapter Outline

The remainder of this chapter is organized as follows. Section 9.2 gives an overview of the
architecture introduced in this chapter. Using RRR, an analytical model for the response time
of the system is introduced for n = 2 servers in section 9.3, and extended for n ≥ 3 servers in
section 9.4. Numerical results are given in section 9.5, then results of experimentation on a realistic
testbed are presented in section 9.6. Finally, section 9.7 concludes this chapter.

9.2 Joint Load-Balancing and Autoscaling

This section presents an overview of the architecture introduced in this chapter. Application
instances are ordered into a chain, and an SLA on response times is decided by the data-center
operator. A load-balancer dispatches requests through this chain with SR, using the dataplane of
6LB introduced in section 7.4. Each of the instances in the chain decides to accept the connection
if this yields to locally satisfying the SLA, otherwise forwards it to the next instance in the chain,
as illustrated in figure 7.3. This way, queries are served by the first instance of the chain able
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Algorithm 11 Local Autoscaling at Last Instance

cv ← 0 ⊲ threshold violations

w ← 0 ⊲ window size

εup ← 0.75 ⊲ upscaling bound

εdown ← 0.40 ⊲ downscaling bound

t0 ← time
for each connection establishment packet p do

v ← p.lastSegment
b← number of busy threads for v
w++
if b ≥ c then

cv++
end if

if t− t0 > 1 min then

if cv/w > εup then

request upscaling
else if cv/w < εdown then

request downscaling
end if

cv ← 0;w ← 0; t0 ← time
end if

p.segmentsLeft← 0
p.dst← v
forward p to local workload v

end for

S2S1 S3 S4

Figure 9.1 – First-available-instance LB (algorithm 7) with n = 4 instances and c = 3

to meet the SLA (this will be called first-available-server load-balancing). This allows for local,
application-load-aware load-balancing decisions, without incurring any monitoring. A difference
with respect to the mechanism introduced in chapter 7 is that the chain of application instances
is fixed – whereas in chapter 7 lists of two pseudo-random candidates are chosen.

Since queries are served by the first available candidate, last instances tend to be less loaded. If
too few queries reach the last instance, this indicates that the chain is over-dimensioned; conversely,
too many queries reaching the last instance indicates under-dimensioning. Therefore, autoscaling
is achieved by the last instance in the chain, rather than by a central entity. By inspecting the
quantity of received queries, that last instance will indicate to the load-balancer that another in-
stance must be added to the chain, or that the last one can be removed. This allows for distributed,
locally-driven autoscaling decisions, without centralized monitoring.

9.2.1 First-available-instance Load-Balancing

This chapter introduces a load-balancing policy using the framework described in chapter 7,
that allows for monitorless up- or down-scaling of a set of n replicated application instances, while
ensuring that an SLA is met. A replicated application whose mean service time is 1/µ is considered,
for which the expected response time (as seen by clients) T must be lower than an agreed-upon
SLA of S (in units of mean service time), i.e., E[T ] ≤ S × 1

µ . Then, a simple load-balancing

policy consists of ordering the n instances into a chain (s1, . . . , sn), setting a threshold c = ⌊S⌋,
and making sure that each never handles more than c clients at a given time (see figure 9.1).
Formally, each query is assigned (s1, . . . , sn) as a candidate SR list, and each application instance
in the list either accepts the query if it currently serves < c clients – otherwise, it forwards the
query to the next one in the list (see algorithm 7). To ensure that all queries are served, the last
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Figure 9.2 – Autoscaling when c = 3. The level of red in each instance shows the average number of
clients as computed in section 9.4. When the request rate increases from λ = 2.0 to λ = 2.3, the third
instance observes that is has become highly occupied and thus requests upscaling.

instance sn must always accept connections. Thus, each of the first (n − 1) instances never serve
more than c clients, ensuring an expected response time lower than c/µ for queries served by those
(assuming either a FIFO or Processor Sharing policy). The last instance accepts the other queries,
and, provided that the chain is well-dimensioned, will also serve them within a sufficiently small
amount of time – how to dimension the chain is discussed in section 9.2.2.

9.2.2 Autoscaling

A key goal of this load-balancing policy is to make it simple to automatically dimension the size
of the chain, while maintaining the SLA: except when the last instance serves too many queries,
the SLA will be satisfied by the chain. This can be exploited to perform autoscaling: when the
last instance serves too many (or too few) queries, which can be detected locally, this is a signal
that the chain must be scaled up (or down) – allowing for monitorless autoscaling, as illustrated
in figure 9.2.

As formalized in algorithm 11, the virtual router hosting the last instance in the chain keeps
statistics about the size of its queue upon receipt of queries. The fraction of SLA violations (more
than c clients in the last instance) is maintained over a fixed time window, and when it goes above a
preconfigured threshold εup, the virtual router hosting the instance requests upscaling of the chain.
The virtual router hosting the last instance also maintains the fraction of times it was empty upon
query reception, and periodically checks whether this fraction is below a predetermined threshold
εdown, in which case downscaling is requested.

9.3 First-Available-Instance LB with 2 Instances

The first-available-instance load-balancing scheme introduced in section 9.2.1 is analytically
studied in this chapter. For ease of presentation and modeling, the case of n = 2 instances (for
which the RRR technique applies) is analyzed first. The general case of n ≥ 3 instances (for which
the RRR technique needs to be generalized) will be studied in section 9.4.

9.3.1 Markov Model

Arrivals are assumed to follow to a Poisson process of intensity λ > 0. Each server has a
processing capacity of µ > 0, with exponentially-distributed service times (i.e., the probability of
a service lasting less than t is 1− e−µt). To ease notation, let ρ = λ/µ be the normalized request
rate. As described in section 9.2.1, queries are directed to the first instance, which will serve them
if the number of pending connections is < c, or otherwise pass them to the second instance, which
will serve them in any case.
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Figure 9.3 – Markov chain for first-availabe-instance LB with n = 2 instances. State (i, j) means i clients
in the first instance and j in the second one. The border row {0, . . . , c} × {1} is grayed.

Notation Description

pD(i,j)→(k,j−1)

Probability that first state
visited on row j − 1 when

starting from (i, j) is (k, j − 1)

pDi→k

Probability that first state visited on row
0 when starting from (i, 1) is (k, 0)

RD
(i,j)→(⋆,j−1)

Mean reward of zN2(t) when going
from (i, j) down to row j − 1

RD
i

Mean reward of zN2(t) when going
from (i, 1) down to row 0

RL
i

Mean reward of zN2(t) when going
from (i, 0) to (0, 0)

RC Mean reward of zN2(t) over a cycle
from (0, 0) to (0, 0)

Table 9.1 – Notation used when applying the RRR technique

Therefore, the whole system can be modeled as a Markov chain, with state space S = {0, . . . , c}×
N. In state (i, j), i clients are in the first server’s queue and j in the second server’s queue. Tran-
sitions that increase j can only happen when i = c, whereas transitions that increase i can happen
from any state with i < c. Figure 9.3 shows a graphical representation of this Markov chain.

9.3.2 Applying RRR to the Markov Model

To obtain the client response time, the expected number of clients will be derived [191]. As the
behavior of the first server is described by an M/M/1/c law, the probability distribution of N1,
the number of clients served by the first instance, can be derived as:

P[N1 = k] =
ρk

∑c
i=0 ρ

i
=

ρk(1− ρ)

1− ρc+1
,

and the expected number of clients in the first instance is:

E[N1] =

∑c
k=0 kρ

k

∑c
k=0 ρ

k
=

ρ(cρc+1 − (c+ 1)ρc + 1)

(ρ− 1)(ρc+1 − 1)
.

To obtain the probability distribution of N2, the number of clients served by the second in-
stance, the RRR technique is applied with metric of interest M(t) = zN2(t) (where z ∈ C), as in
equation (9.1). This allows deriving the probability generating function of N2, f(z) = E[zN2 ]. The
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home state is chosen as (0, 0). To compute the mean reward of M(t) over a cycle from the home
state to itself, the reward is decomposed into two parts: (i) the mean reward when going one level
down in the Markov chain (i.e., until s2 has one less client), and (ii) the mean reward when going
from a state (i, 0) to the home state (i.e., until all clients have left). Table 9.1 summarizes the
notation used in this chapter.

Reward when going one level down

For j ≥ 1, let RD
(i,j)→(⋆,j−1) be the mean reward earned between entering state (i, j) and

reaching row j− 1 (i.e., reaching any state (k, j− 1)). Due to the repeating structure of the chain,
that reward only needs to be computed for the border row {0, . . . , c} × {1} (identified in gray in
figure 9.3). This is formalized by the following lemma:

Lemma 9.1. For i ∈ {0, . . . , c} and j ≥ 1, RD
(i,j+1)→(⋆,j) = zRD

(i,j)→(⋆,j−1). Therefore, only

RD
(i,1)→(⋆,0) needs to be computed, which will be denoted by RD

i .

Proof. Since the restriction of the chain to {0, . . . , c} × {j, j + 1, . . .} (including transitions to the
(j − 1)th row) is isomorphic to its restriction to {0, . . . , c} × {j + 1, j + 2, . . .} (including transitions to
the jth row), and since there is exactly one more client in the second instance in the latter restriction,
the mean reward of zN2(t) earned when going from (i, j+1) to row j is the same as the mean reward of
zN2(t)+1 earned when going from (i, j) to row j − 1. Hence, RD

(i,j+1)→(⋆,j) = E[
∫

(i,j+1)→(⋆,j)
zN2(t)dt] =

E[
∫

(i,j)→(⋆,j−1)
zN2(t)+1dt] = zRD

(i,j)→(⋆,j−1).

Let pD(i,j)→(k,j−1) be the probability that, starting from state (i, j), the first state visited when

reaching row j−1 is (k, j−1). Since the chain has a recursive structure along the vertical dimension,
the following lemma holds:

Lemma 9.2. For j ≥ 1 and k ∈ {0, . . . , c}, pD(i,j)→(k,j−1) is independent from j, and will therefore

be denoted by pDi→k.

Proof. The proof is similar to that of lemma 9.1.

It is therefore possible to formulate a system of equations1 for the pDi→k, for k ∈ {0, . . . , c}:

pD0→k =
µ

λ+ µ
δ0k +

λ

λ+ µ
pD1→k (9.2)

pDi→k =
µ

λ+ 2µ
δik +

µ

λ+ 2µ
pDi−1→k +

λ

λ+ 2µ
pDi+1→k ∀1 ≤ i ≤ c− 1 (9.3)

pDc→k =
µ

λ+ 2µ
δck +

µ

λ+ 2µ
pDc−1→k +

λ

λ+ 2µ

c
∑

l=0

pDc→l p
D
l→k (9.4)

In these equations, the leftmost terms denote the probability of reaching (k, 0) from (i, 1) directly,
while the other terms express reaching (k, 0) from (i, 1) by transitioning to an adjacent state first.
The rightmost term in equation (9.4) comes from the possibility of reaching (k, 0) from (i, 1) by
going to row 2 first, and uses lemma 9.2 to compute the transition from row 2 back to row 0.

Having computed the pDi→k, it is possible to state a system of equations for the RD
i :

RD
0 =

z

λ+ µ
+

λ

λ+ µ
RD

1 (9.5)

RD
i =

z

λ+ 2µ
+

µ

λ+ 2µ
RD

i−1 +
λ

λ+ 2µ
RD

i+1 ∀1 ≤ i ≤ c− 1 (9.6)

RD
c =

z

λ+ 2µ
+

µ

λ+ 2µ
RD

c−1 +
λ

λ+ 2µ

(

zRD
c +

c
∑

k=0

pDc→k RD
k

)

(9.7)

1δnm denotes the Kronecker symbol: δnm=1 if n=m and 0 otherwise.
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The first terms in these equations denote the mean reward of zN2 earned when in state (i, 1), that
is, z times the expected time spent in (i, 1), since in these states N2 = 1 and zN2 = z. The other
terms come from the reward earned if going to an adjacent state instead of directly going to row
0. The bracketed term in equation (9.7) uses lemma 9.1 to express the reward when going from
(c, 2) to row 1, and then lemma 9.2 for going from a non-deterministic state in row 1 to row 0.

Reward when going from row 0 to the home state

Having computed RD
i , it is possible to compute RL

i , the mean reward earned when going from
a state (i, 0) with i ≥ 1 to the home state (0, 0) – with RL

0 = 0, since reaching (0, 0) means the end
of the cycle. The system of equations for the RL

i is:

RL
0 = 0 (9.8)

RL
i =

1

λ+ µ
+

µ

λ+ µ
RL

i−1 +
λ

λ+ µ
RL

i+1 ∀1 ≤ i ≤ c− 1 (9.9)

RL
c =

1

λ+ µ
+

µ

λ+ µ
RL

c−1 +
λ

λ+ µ



RD
c +

c
∑

j=0

pDc→j R
L
j



 (9.10)

This system is obtained in a similar fashion to the RD
i . Again, the bracketed term in equation

(9.10) uses lemma 9.1 and expresses the possibility to go from (c, 0) to (c, 1), back to one of the
possible states in row 0, and finally to (0, 0).

Mean reward over a cycle

Finally, it is possible to express RC , the mean reward over a cycle from the home state to itself:

RC =
1

λ
+RL

1 (9.11)

This allows deriving the total expected value of zN2 , using equation (9.1):

E[zN2 ] =
E[
∫

(0,0)→(0,0)
zN2(t)dt]

E[
∫

(0,0)→(0,0)
1dt]

=
RC(z)

RC(1)
(9.12)

9.3.3 Closed-form Solution for c = 1

When the threshold is c = 1 (i.e., s1 accepts queries only when empty), solving equations (9.2)-
(9.12) allows deriving the expected value of N2 in closed form:

E[N2] =
ρ2

(1 + ρ)(
√
1 + ρ− ρ)

(9.13)

Proof. The system of equations for the pDi→j is the following:

pD0→0 =
µ

λ+ µ
+

λ

λ+ µ
pD1→0 (9.14)

pD0→1 =
λ

λ+ µ
pD1→1 (9.15)

pD1→0 =
µ

λ+ 2µ
pD0→0 +

λ

λ+ 2µ
(pD1→0p

D
0→0 + pD1→1p

D
1→0) (9.16)

pD1→1 =
µ

λ+ 2µ
+

µ

λ+ 2µ
pD0→1

+
λ

λ+ 2µ

(

(pD1→1)
2 + pD1→0p

D
0→1

)

(9.17)

Noting that pD1→0 = 1 − pD1→1, p
D
1→1 can easily by computed by substituting this relation and (9.15)

in (9.17), then solving a quadratic equation. pD1→0 can then be retrieved from pD1→0 = 1 − pD1→1, and
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pD0→0, p
D
0→1 by substituting back those values in (9.15) and (9.14). This yields, after some algebra:

pD0→0 =
1√
1 + ρ

(9.18)

pD0→1 = 1− 1√
1 + ρ

(9.19)

pD1→0 =
1

ρ

√

1 + ρ− 1

ρ
(9.20)

pD1→1 = 1 +
1

ρ
− 1

ρ

√

1 + ρ (9.21)

The system of equations for the RD
i is:

RD
0 =

z

λ+ µ
+

λ

λ+ µ
RD

1 (9.22)

RD
1 =

z

λ+ 2µ
+

µ

λ+ 2µ
RD

0

+
λ

λ+ 2µ
(zRD

1 + pD1→0 RD
0 + pD1→1 RD

1 ) (9.23)

Substituting RD
0 , pD1→0 and pD1→1 in (9.23) and rearranging gives, after some algebra:

RD
1 =

z

µ

1 + ρ+
√
1 + ρ

1 + ρ+
√
1 + ρ− ρ(1 + ρ)z

(9.24)

The equation for RL
1 is:

RL
1 =

1

λ+ µ
+

λ

λ+ µ

(

RD
1 + pD1→1R

L
1

)

(9.25)

Substituting pD1→1 and RD
1 , and solving for RL

1 yields:

RL
1 =

1

µ

1 + ρ+ (1 + ρz)
√
1 + ρ√

1 + ρ(1 + ρ+
√
1 + ρ− zρ(1 + ρ))

(9.26)

From this, one can express the total reward over a cycle, using equation (5.9):

RC =
1

λ

1 + 2ρ+ ρ2 + (1 + 2ρ− ρz)
√
1 + ρ√

1 + ρ(1 + ρ+
√
1 + ρ− zρ(1 + ρ))

(9.27)

Finally, this allows us to formulate the probability generating function of the number of clients in the
second server, using equation (9.12):

E[zN2 ] =
(1 +

√
ρ+ 1− ρ2)(ρ+

√
1 + ρ+ z(1−√1 + ρ))

(1 + ρ)(1 + ρ+
√
1 + ρ− zρ(1 + ρ))

(9.28)

It is finally possible to retrieve the expected number of clients in the second server by taking the
derivative of the probability generating function at z = 1:

E[N2] =
∂E[zN2 ]

∂z

∣
∣
∣
z=1

=
ρ2

(1 + ρ)(
√
1 + ρ− ρ)

9.3.4 Solving for c ≥ 2

When the threshold is c ≥ 2, it is possible to express the general form for E[zN2 ], and compute
numerical2 values for its coefficients for any value of ρ, as described below.

First, the values of pDi→k can be computed numerically by solving the system of equations
(9.2),(9.3),(9.4). Plugging these in equations (9.5),(9.6),(9.7) allows computing the RD

i , yielding
the following result:

Lemma 9.3. For all i ∈ {0, . . . , c}, RD
i = Aiz+Biz

2

C−Dz , where Ai, Bi, C,D are real constants, and
Bc = 0.

2Unfortunately, computing a closed-form as a function of ρ would involve solving polynomials of degree c+1 in
ρ.
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Figure 9.4 – Markov chain for n = 3 instances, when c = 2. State space is {0, 1, 2}2 × N. The x, y
and z axes represent the first, second and third instances. The border hypercube (a 3 × 3 square here)
C1 = {0, 1, 2}2 × {1} is grayed.

Proof. By induction, using (9.5) and (9.6), we can write RD
i = αiR

D
0 + βiz, where αi, βi are real

constants. In particular, RD
c = αcR

D
0 + βcz. But, (9.7) gives RD

c =
Gz+HRD

0
I−Jz

. Combining both forms

yields RD
0 = Gz−(I−Jz)βcz

αc(I−Jz)−H
:= A0z+B0z

2

C−Dz
, and injecting in RD

i = αiR
D
0 + βiz gives the desired form. For

i = c, this precisely gives RD
c = αcGz−βczH

αc(I−Jz)−H
, hence Bc = 0.

The values of RD
i and pDi→k can then be inserted into equations (9.9),(9.10) to compute the RL

i ,
yielding:

Lemma 9.4. For all i ∈ {1, . . . , c}, RL
i = Ei+Fiz

C−Dz , where Ei, Fi are real constants, and C,D the
same as in lemma 9.3.

Proof. By induction, we can express the RL
i as a function of RL

1 , using equation (9.9): RL
i = γiR

L
1 +εi,

where γi, εi are real constants. On the one hand, this gives RL
c = γcR

L
1 + εc. On the other hand, (9.10)

gives RL
c = K +LRL

1 +MRD
c . Combining these two forms gives RL

1 = N +ORD
c := E1+F1z

C−Dz
, hence the

desired form for all i by injecting in RL
i = γiR

L
1 + εi.

This finally allows computing the probability generating function of N2, as stated in theo-
rem 9.1:

Theorem 9.1. The probability generating function of N2 has the form E[zN2 ] = E+Fz
C−Dz , where

E,F are real constants and C,D are the same as in lemma 9.3. With this notation, the expected

number of clients in the second instance is E[N2] =
∂E[zN2 ]

∂z |z=1
= FC+ED

(C−D)2 .

Proof. This follows from applying lemma 9.4 to i = 1, and using equations (9.11) and (9.12).

This means that N2 follows a geometric distribution when conditioned to N2 ≥ 1. Combining
the expressions for E[N1] and E[N2] finally yields the expected response time, as per Little’s

law [191]: E[T ] = E[N1]+E[N2]
λ .

9.4 First-Available-Instance LB with n ≥ 3 Instances

In this section, the model presented in section 9.3 is extended to the case of chains of length
n ≥ 3. With first-available-instance load-balancing, a query is accepted by the first instance of the
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chain currently serving < c clients, or by the last one otherwise. Hence, the state of the system
can be modeled by a vector in S = {0, . . . , c}n−1 × N, where the i-th coordinate represents the
number of clients in the i-th server’s queue.

In each state, the system can transition upwards with rate λ to the state in which the first
available instance has gained one client, and downwards with rate µ to any of those states where one
client has left. Formally, let ei be the vectors of the canonical basis of Rn: ei = (δi1, . . . , δin). For
each state x = (x1, . . . , xn), let the upward direction of x be u(x) = x+ emin{i∈{1,...,n}|xi<c}, with
the convention min ∅ = n. A set of downward directions is also defined as d(x) =

⋃

i:xi>0{x− ei}.
With this notation, from each state x there is a transition to u(x) with rate λ, and a transition to
each state in d(x) with rate µ.

Let Ni be the number of clients in the i-th instance. For the first n−1 instances, this metric can
be evaluated without RRR by solving the balance equations, since the underlying Markov chain
has finite state space {0, . . . , c}n−1. To compute Nn, the number of clients in the last instance,
the RRR technique is extended to n-dimensional Markov chains that repeat in one dimension: this
new method will be referred to as RRRn. Let 0 = (0, . . . , 0) be the home state. The metric of
interest is chosen to be M(t) = zNn(t), the probability generating function of the number of clients
in the last instance.

Whereas with RRR2 a border row {0, . . . , c} × {1} was identified, from which the reward could
be recursively computed, RRRn uses a border hypercube C1 = {0, . . . , c}n−1 × {1}. The approach
is similar to RRR2: computing the reward from any state in the border hypercube C1 down to any
state in the base hypercube C0 = {0, . . . , c}n−1 × {0}, and from any state of the base hypercube
to the home state 0. To ease notation, let C = {0, . . . , c}n−1 and c = (c, . . . , c) ∈ C.

First, it is possible to compute pDi→k, the probability that y = (k, 0) ∈ C0 is the first state
visited in the base hypercube when coming from a state x = (i, 1) ∈ C1 of the border hypercube,
by solving the following system:

pDi→k =
µ

λ+ (1 + |d(i)|)µδik +
µ

λ+ (1 + |d(i)|)µ
∑

j∈d(i)

pDj→k

+
λ

λ+ (1 + |d(i)|)µp
D
u(i)→k, ∀i ∈ C \ {c}, ∀k ∈ C (9.29)

pDc→k =
µ

λ+ nµ
δck +

µ

λ+ nµ

∑

j∈d(c)

pDj→k +
λ

λ+ nµ

∑

j∈C

pDc→jp
D
j→k, ∀k ∈ C (9.30)

Then, RD
i , the mean reward earned when going from a state x = (i, 1) ∈ C1 down to C0, can

be found by solving:

RD
i =

z

λ+ (1 + |d(i)|)µ +
µ

λ+ (1 + |d(i)|)µ
∑

k∈d(i)

RD
k

+
λ

λ+ (1 + |d(i)|)µR
D
u(i), ∀i ∈ C \ {c} (9.31)

RD
c =

z

λ+ nµ
+

µ

λ+ nµ

∑

k∈d(c)

RD
k +

λ

λ+ nµ

(

zRD
c +

∑

k∈C

pDc→kR
D
k

)

(9.32)

This allows computing RL
i , the mean reward earned when going from a state x = (i, 0) ∈ C0 to

the home state:

RL
0 = 0 (9.33)

RL
i =

1

λ+ |d(i)|µ +
µ

λ+ |d(i)|µ
∑

k∈d(i)

RL
k

+
λ

λ+ |d(i)|µR
L
u(i), ∀i ∈ C \ {c,0} (9.34)

RD
c =

1

λ+ (n− 1)µ
+

µ

λ+ (n− 1)µ

∑

k∈d(c)

RD
k

+
λ

λ+ (n− 1)µ

(

RD
c +

∑

k∈C

pDc→kR
L
k

)

(9.35)
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Figure 9.5 – Expected response time E[T ] and number of VMs needed to satisfy SLA, as a function of
the request rate. SLA = 2. SR with threshold c = 2 (SR2) vs single-choice (SC).

Finally, the mean reward of M(t) = zNn(t) over a cycle, RC , can be expressed as:

RC =
1

λ
+RL

(1,0,...,0) (9.36)

The similar form between equations (9.29)-(9.36) and equations (9.2)-(9.11) allows computing
E[zNn ] similarly as for n = 2:

Theorem 9.2. The probability generating function of Nn has the form E[zNn ] = En+Fnz
Cn−Dnz

, where
Cn, Dn, En, Fn are real constants, which depend on c and n.

9.5 Numerical Results

To evaluate the performance of the load-balancing and autoscaling strategy proposed in this
chapter, the expected number of clients in the system is computed as described in section 9.4,
allowing to derive the average response time using Little’s law [191]: E[T ] = E[N ]/λ. Note that
this computation can only be carried for reasonably small chains, as the non-recursive part of the
state space has a size which scales as Θ((c+ 1)n).

As a baseline, random “single-choice” load-balancing is used, for which the response time is:

E[T ] =
1

1− ρ/n

1

µ
(9.37)

Figure 9.5 depicts the average response time for first-available-instance load-balancing (denoted
by SR2), with an SLA S = 2 and a threshold c = 2. In other words, to avoid a response time
greater than S = 2, all instances but the last serve no more than c = 2 clients. (Note that response
times and SLAs in this section are described in 1/µ units.) Each of the thin lines shows the
response time as a function of the request rate ρ when using n instances, for n ∈ {1, . . . , 5}. The
thick line shows the response time when applying autoscaling, assuming a perfect satisfaction of
the SLA. As a baseline, figure 9.5 also depicts this response time for single-choice load-balancing
(SC), with the same SLA. As expected, the proposed mechanism allows to use fewer VMs to meet
the same SLA as compared to random load-balancing. For instance, the expected response time
(in 1/µ units) with SR2 is 1.83 when ρ = 1.8 with n = 3 VMs, as compared to 2.5 with n = 3
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Figure 9.6 – Expected response time E[T ] and number of VMs needed to satisfy SLA, as a function of
the request rate. SLA = 3. SR with threshold c = 3 (SR3) vs single-choice (SC).

VMs or 1.81 with n = 4 VMs for single-choice LB. In this example, one more VM is thus needed
with single-choice to reach the same service quality. Figure 9.5 (bottom) depicts the number of
VMs necessary to meet the SLA, for both policies, confirming that the proposed approach reduces
the number of necessary VMs as compared to single-choice LB.

To understand the impact of the SLA on the behavior of the system, figure 9.6 depicts the
average response time as a function of the request rate, with a different SLA S = 3. The first-
available-instance policy is used with c = 3 as a threshold (SR3), with single-choice load-balancing
(SC) as baseline. The fairer allocation of queries achieved with SR induces a reduction in the
number of VMs needed to achieve a given SLA, as depicted in figure 9.6 (bottom). Due to the less
strict SLA, less VMs are required overall as compared the previous example of figure 9.5.

Finally, figure 9.7 depicts the response time and number of VMs needed when the request rate
ρ(t) exhibits a diurnal pattern, for S = 2 and c = 2. With this specific example, never more than
4 VMs are needed to satisfy the SLA with SR2, whereas SC requires up to 6 VMs. The number
of VM-hours needed decreases from 83.4 to 66.3, yielding a 21% energy cost reduction.

9.6 Wikipedia Replay

While the results presented in section 9.5 provide analytical insights on the benefits of the
proposed architecture, analysis is limited to small chains (due to the increasing size of the state
space when n increases). To support the belief that these benefits also hold for larger chains and
in real environments, this section presents an implementation of the architecture, and its effects
when subject to a real workload.

To that purpose, the load-balancer performing insertion of SR headers and flow steering as
described in figure 7.3, and the server agent performing algorithms 7 and 11, are implemented as
VPP plugins. As workload, a typical Web environment (Apache, MySQL, PHP, memcached) is
used to host the MediaWiki software3, with a dump of the English Wikipedia – similarly as was
done in section 7.6.3. This environment is replicated across 24 VMs (each with 2 vCPUs) running
on two Intel Xeon E5-2690 machines. The experiment consists of replaying traces of 24 hours

3https://www.mediawiki.org/wiki/Download

https://www.mediawiki.org/wiki/Download
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Policy SR (c = 4) SC (SLA = 0.29 s)

Total energy cost (VM-hours) 183 209

Average response time (ms) 289 312

99.9 percentile response time (s) 1.58 17.2

Table 9.2 – SR Autoscaling Wikipedia replay: energy cost and response time

of queries destined to dynamic pages from the English Wikipedia4 [195], from a traffic generator
hosted on a third machine. This trace is interesting not just because it represents real traffic, but
also because it exhibits a diurnal pattern, for which autoscaling is desirable.

As a reasonable SLA, c = 4 is taken as threshold for algorithm 7 (SR4). That is, a connection
request is forwarded along the chain of application instances, until reaching one with < 4 busy
threads in Apache (i.e., twice the number of cores of the VM) – or reaching the last instance.
As baseline, Single-Choice randomized load-balancing (SC) with a simple feedback autoscaling
algorithm is used: response times are collected every two minutes, and if the response time as
estimated by equation (9.37) with n+1 (respectively n−1) VMs is found to be smaller (respectively
greater) than a given SLA, upscaling (respectively downscaling) is initiated. For the fairest possible
comparison, the 24-hours experiment is first run with SR4, then the resulting average response
time over the day is used as the SLA for the SC experiment, ensuring that both policies yield
similar average response times.

Results are depicted in table 9.2: while the average response time for all queries is similar with
both mechanisms (by design of the experiment), the running cost (in VM-hours) is reduced by 12%
when using the proposed mechanism. This is further detailed in figure 9.8, which depicts the request
rate as a function of the time of day, alongside the number of running VMs and the instantaneous
response time for both policies. The number of VMs automatically follows the request rate, as
expected, and with SR4 the number of running VMs is constantly less than or equal to its baseline
counterpart. The gain is greater at peak hours, where SR uses around 10 VMs, vs 12 or more
for the baseline. Finally, figure 9.9 depicts the distribution of response times over all the queries.
In addition to be able to serve queries with the same average response time with fewer VMs, the
proposed architecture reduces the tail of the response time distribution (a property highly desirable
in data-centers, especially when services are chained and/or parallelized [178]). Notably, the 99th

percentile goes from 1.17 s with the baseline to 0.762 s with SR, and the 99.9th percentile from
17.2 s to 1.58 s, an improvement of one order of magnitude.

9.7 Summary of Results

This chapter has introduced a unified load-balancing and autoscaling framework, which allows
for local, decentralized decisions. Using Segment Routing, queries are dispatched through a chain
of application instances, each of which taking local acceptance decisions, and the last of which
taking autoscaling decisions. The proposed architecture yields operational benefits (due to the
absence of need for monitoring) as well as service level benefits (as locally-taken decisions provide
better load-balancing fairness and autoscaling reactivity). For small chains, benefits in terms
of response time and number of instances are demonstrated analytically, by using the Recursive
Renewal Reward technique (extended to n-dimensional state spaces). In addition, the proposed
architecture has been implemented within a virtual router and evaluated with realistic traffic and
workloads, confirming its applicability. Evaluation shows that it is possible to provide the same
average response time as with random load-balancing, while decreasing the number of required
VMs and reducing the tail latency by an order of magnitude, but also removing the need for
centralized monitoring to perform autoscaling.

4Dynamic pages are found by matching http://en.wikipedia.org/wiki/index.php/ in the URLs. Due to the
capacity of the testbed (which could not sustain replaying every query), every second query was replayed.

http://en.wikipedia.org/wiki/index.php/
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Chapter 10

Conclusion

The growing demand for computing resources has led to the development of complex data
center architectures – however, these architectures often provide sub-optimal resource utilization
and/or high management overhead, because they fail to provide a tight integration between the
applications and the network. This thesis has shown that encoding rich behavior directly at the
network layer, and allowing it to transparently interact with applications, is a way to greatly
improve scalability of data center architectures. Adopting such an approach has been shown to
allow for providing (i) transparent task mobility, (ii) low-footprint reliable multicast, and (iii)
in-band load-balancing and autoscaling — therefore allowing for greater scalability and resource
usage. This is achieved by architecting network protocols on top of recently-introduced network
frameworks (Segment Routing and Bit-Indexed Explicit Replication) which provide source-routing
capabilities. Benefits of this approach have been demonstrated by a combination of theoretical
analysis, network simulations, and evaluation of real implementations on large-scale testbeds.

In part II, the possibility of performing seamless task mobility in data centers has been inves-
tigated. Chapter 3 introduced a framework that enables zero-loss migration of Virtual Machines,
using Segment Routing. This is achieved by opening a logical path comprising the source and des-
tination host machines involved in a VM migration, and using SR with special functions to browse
this path. This sets the ground for an architecture wherein task can be freely moved according to
their communication patterns, rather than placed on one machine once and for all. In chapter 4,
this is used as a baseline assumption, to introduce an multi-objective optimization framework aim-
ing at (i) placing the greatest number of tasks, while (ii) migrating already running ones according
to their pairwise communication patterns, so as to (iii) maximize overall achievable throughput. A
resolution algorithm using the ε-constraint method is used as a baseline, and a heuristic algorithm
is proposed, which allows reducing the solving time while providing solutions close to the optimal
ones.

Then, part III has investigated how BIER and SR could be used to provide efficient reliable
multicast in data centers. Chapter 5 introduced a baseline BIER-based reliable multicast protocol:
using Negative Acknowledgements, destinations having missed a copy of a multicast data packet
are gathered into a set, and retransmissions are sent to those destinations only, by using a suitable
BIER packet. This allows for a lightweight usage of the network resources, as shown by simulations
and proven by theoretical analysis. This framework has been further extended in chapter 6, which
further diminishes the pressure on costly links, by allowing retransmissions to be sent by peers
close to the failing destinations, rather than the source. This is achieved by way of using Segment
Routing to send NACKs through a path of local “potential retransmitting peers”, each of them
deciding on whether they can retransmit a copy of the missed packet, or need to send the NACK
to the next candidate.

Finally, part IV has explored how Segment Routing could be used to provide efficient load-
balancing services. Chapter 7 set the basis for the part, by introducing 6LB, a load-balancing
framework that allows queries to be sent (with SR) through a chain of candidate servers, each
of those taking local decisions as to whether to accept the query. This enables load-balancing
decisions to be taken by the application themselves, rather than by a central entity which would
have to monitor the state of all application instances. This provides non-negligible benefits in terms
of client quality of experience (or conversely, in terms of power needed to satisfy a predetermined
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quality of experience), as shown by large-scale evaluation on real traces as well as theoretical
analysis. Feasibility of a hardware implementation of 6LB has then been explored in chapter 8.
Through the use of covert channels, the requirement of per-flow-state inherent to 6LB can be
removed, allowing for a stateless implementation. This is validated by the implementation of a
prototype for the NetFPGA-SUME platform, demonstrating that it is possible to perform the load-
balancing dispatching function with high throughput and negligible latency. Finally, the possibility
of expanding the data-plane of 6LB to provide autoscaling has been explored in chapter 9. By
sorting application instances into a fixed chain, and sending queries with SR through that chain, the
last instance will be naturally under- or over-loaded if the chain itself is under- or over-dimensioned.
By observing its local state and reacting accordingly, the last instance can therefore trigger up-
or down-scaling, which allows for monitor-less, decentralized auto-scaling. The validity of this
approach is confirmed both by mathematical analysis and large-scale evaluation on real traces.

In sum, the work carried in this thesis demonstrates that it is possible to provide generic data-
center primitives where decisions are taken directly in the data-plane, rather than by a central
entity. This therefore goes in complement of traditional Software Defined Networking architec-
tures, wherein the data-plane would be constantly updated to reflect the last decisions taken by
the controller, by going one level farther in granularity and realtime-ness. This has been shown
to provide better resource usage and lower network usage, while requiring less monitoring and
centralization.

To conclude, such an approach provide greater scalability in data center premises, both (i) by
unifying the network layer and decreasing the need for out-of-band monitoring, and (ii) by providing
better resource utilization as a result of this ability to take local decisions. Such architectures are
therefore desirable, for reasons concerning both operational complexity and reduction of energy
consumption.



Appendix A

Résumé en français

Cette thèse étudie l’utilisation de protocoles de couche réseau pour fournir, au sein de réseaux
de centres de données, des primitives de mobilité des tâches, de distribution fiable de contenu, et
d’équilibrage de charge. Elle comprend 5 parties et 10 chapitres, structurés comme suit.

La partie I est une mise en contexte introductive. Le chapitre 1 parcourt l’état de l’art sur les
architectures de centres de données (data centers) et sur les protocoles réseaux associés. Il introduit
ensuite deux architectures réseau intéressantes, IPv6 Segment Routing (SRv6 [7]) et Bit-Indexed
Explicit Replication (BIER [8]), qui utilisent le paradigme de routage à la source afin d’ajouter
des fonctions à la couche réseau. Le chapitre 2 résume ensuite comment ce concept a été appliqué
le long de cette thèse, afin de fournir des primitives de mobilité des tâches, de distribution fiable
de contenu, et d’équilibrage de charge.

La partie II étudie la mobilité des tâches dans les centres de données. Le chapitre 3 (publié
dans [79]) introduit l’utilisation de SRv6 afin de permettre la migration de machines virtuelles
sans perte de paquets. Les protocoles réseaux traditionnellement utilisés pour la migration de
machines virtuelles (virtual machines, VMs) reposent sur la signalisation, par une VM venant
de terminer une migration, de sa nouvelle localisation à un répertoire centralisé. Cela crée une
période de temps transitoire durant laquelle les paquets destinés à de telles VMs sont perdus. Pour
résoudre ce problème, le chapitre 3 propose de pré-allouer de manière conservative, grâce à SRv6,
un chemin de migration comprenant les machines hôtes de laquelle et vers laquelle la migration est
initiée. Ainsi, les paquets atteignent toujours la machine correcte, quelle que soit l’étape au sein
du processus de migration. Ce chemin est alloué par le plan de contrôle avant que la migration en
elle-même ne soit lancée, et jusqu’après son accomplissement. Ceci est accompli par l’introduction
de deux nouvelles fonctions SRv6 : la première vérifie (au sein de la machine hôte source) si le
lien vers la VM est toujours établi, et selon le cas, transfère les paquets ou bien vers la VM, ou
bien vers le second segment ; la seconde vérifie (au sein de la machine hôte destination) si la VM a
repris complètement son exécution, et en fonction, met en tampon localement les paquets, ou bien
les transfère vers la VM. Ce mécanisme a été implémenté au sein d’un routeur virtuel (VPP [31]),
et l’évaluation montre qu’il est en effet possible de migrer des VMs sans perte de paquets, ce qui
permet de réduire la latence et la durée de service des flux servis par l’application hébergée sur la
VM.

Une fois la possibilité de migrer des tâches sans perte introduite, le chapitre 4 (publié dans [80])
étudie comment il est possible de fournir de la migration de tâches utilisant les caractéris-
tiques des flux, c’est-à-dire de migrer des tâches communicant les unes avec les autres de façon à
les rapprocher dans la topologie, et ce pour optimiser le trafic réseau. Les architectures de gestion
des centres de données introduites traditionnellement dans la littérature scientifique considèrent
ou bien les demandes réseau tâche-à-tâche, ou bien le coût des migrations de tâches, mais pas
les deux. Le chapitre 4 introduit un programme d’optimisation multi-objectif visant à maximiser
le débit inter-tâche total, tout en minimisation le coût induit par la migration des tâches, et en
maximisant le nombre de tâches nouvellement allouées. Un programme non-linéaire en variables
mixtes entières (Mixed Integer Non-Linear Programming, MILNP) est introduit afin de capturer
les contraintes et objectives permettant de modéliser ce problème, et ce programme est ensuite
linéarisé en une formulation comme programme linéaire en variables mixtes entières (Mixed Inte-
ger Linear Programming, MILP). La méthode de l’ε-contrainte est utilisée pour calculer l’ensemble
de solutions Pareto-optimales, et sert de référence. À l’aide de simulations, il est démontré que
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la méthode proposée augmente efficacement le débit total réalisable, et ceci grâce à la migration
de tâches communicant ensemble vers des nœuds plus proches dans la topologie. Du fait du coût
élevé en calcul de cette approche, une méthode heuristique est proposée pour calculer de manière
incrémentale des solutions au coût de migration croissant, ce qui permet de retourner une approxi-
mation de la frontière de Pareto. Des simulations montrent que l’heuristique proposée permet de
réduire le temps de calcul des solutions d’un à deux ordres de grandeurs, tout en fournissant des
solutions proches de l’optimum.

La partie III étudie la diffusion fiable de contenus dans les centres de données. Le chapitre 5
(publié dans [81]) introduit l’utilisation de BIER pour fournir de la diffusion multipoint fiable et ef-
ficace (“BIER fiable”). Les protocoles de diffusion multipoint fiable utilisent traditionnellement un
schéma reposant sur des acquittements négatifs (Negative-ACKnowledgements, NACKs), par lequel
les destinations perdant des paquets le signalent à la source. La source utilise ensuite ces signaux
pour produire ou bien des retransmissions point-à-point vers chacune des destinations ayant perdu
le paquet, ou bien des retransmissions multipoint vers l’ensemble du groupe. Le chapitre 5 propose
un protocole reposant sur des NACKs qui vise à minimiser l’impact du trafic de retransmission, en
utilisant BIER. Au lieu d’utiliser des châınes de bits (bitstrings) différentes pour chaque flux, des
châınes de bits différentes sont utilisées pour chaque paquet : une retransmission pour un paquet
perdu est transmise uniquement à l’ensemble des destinations qui n’ont pas reçu ce paquet. Pour
accomplir cela, la source rassemble les NACKs envoyés par les différentes destinations pendant un
court intervalle de temps, et ce afin de construire une châıne de bits appropriée pour la retransmis-
sion. Ce protocole a été implémenté dans un simulateur de trafic réseau (ns3 [147]), ce qui a permis
de conduire une campagne de simulations dans différentes topologies, avec différents scénarios de
perte de paquets. Les simulations montrent que, surtout dans le cas où un sous-ensemble du centre
de données est caractérisé par des pertes localisées, le trafic total émis par le protocole est réduit
(i) comparé aux retransmissions multipoint, car l’arbre tout entier n’a pas à être inondé en cas
de perte, et (ii) comparé aux retransmissions point-à-point, car le trafic n’est pas dupliqué sur
les liens limitants. Un modèle mathématique vient ensuite compléter l’analyse, permettant ainsi
de quantifier l’empreinte du traffic de retransmission pour les trois mécanismes (retransmissions
point-à-point, multipoint, et BIER), dans des topologies arborescentes arbitraires. Une approxima-
tion au premier ordre en α→ 0 (où α est le taux de perte de paquets sur les liens) est calculée dans
le théorème 5.1. Cette approximation montre que le trafic dû aux retransmissions se comporte en
L logL avec les retransmissions BIER, comparé à L log2 L pour les retransmissions point-à-point,
et L2 pour les retransmissions multipoint (où L est le nombre de liens de l’arbre) : ceci confirme
théoriquement les bénéfices précédemment mentionnés.

Le chapitre 6 (soumis en tant que [82]) étend l’utilisation du BIER fiable pour fournir des
retransmissions multipoint assistées par des pairs. Une extension au plan de données de
BIER est proposée, afin de permettre aux destinations d’apprendre quels pairs (i.e., des destina-
tions ayant souscrit au même flux multipoint) sont proches topologiquement. Ceci est accompli
grâce à une châıne de bits des pairs (peerstring) incluse dans chaque paquet, qui est mise à jour
par chaque nœud afin qu’elle contienne invariablement l’ensemble des destinations atteintes par
ce nœud et pour ce paquet. Ensuite, lorsqu’un paquet est perdu, SRv6 est utilisé par les destina-
tions n’ayant pas reçu le paquet afin de diriger les NACKs à travers un chemin comprenant un ou
plusieurs pairs et la source, jusqu’à trouver un pair (ou en dernier recours, la source) capable de
transmettre une retransmission du paquet perdu. Différentes politiques de sélection des pairs sont
proposées et évaluées mathématiquement. En premier lieu, deux politiques statiques simples sont
analysées : la sélection aléatoire d’un pair dans le sous-arbre d’une destination, et la sélection d’un
pair pré-désigné dans ce même sous-arbre. L’analyse mathématique révèle que la seconde politique
génère moins de trafic de retransmission (car les retransmissions sont envoyées uniquement par un
pair), mais a moins de chance de réussir (car si le pair pré-désigné n’a pas reçu le paquet non plus,
aucun pair ne recevra de retransmission). En second lieu, une politique dynamique est introduite,
selon laquelle chaque pair essaie d’apprendre dynamiquement de quel autre pair il a le plus de
chance d’obtenir une retransmission. L’architecture proposée est évaluée grâce à des simulations
réseaux paquet par paquet, dans différentes topologies et avec différentes politiques de sélection
des pairs. L’évaluation montre qu’en utilisant cette architecture, il est possible de réduire la charge
sur les liens centraux (comparé au chapitre 5) en augmentant la localité des retransmissions, ce
qui permet ainsi de réduire l’empreinte totale du trafic réseau.

La partie IV étudie l’équilibrage de charge dans les centres de données. Le chapitre 7 (pu-
blié dans [83, 84]) introduit l’utilisation de SRv6 pour l’équilibrage de charge utilisant les
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charges instantanées des applications. Traditionnellement, les équilibreurs de charges des
centres de données sont répliqués, à des fins de fiabilité et de passage à l’échelle. Lorsque c’est le
cas, le hachage cohérent (consistent hashing) est utilisé, afin de s’assurer qu’un flux est toujours
assigné au même serveur le long de son existence, et ce quel que soit l’équilibreur de charge par
lequel il est traité, et même en cas de reconfiguration de l’ensemble des instances d’application.
Cependant, une telle approche fait que les requêtes sont assignées aux instances d’application sans
prendre en compte leur charge instantanée. Pour remédier à cela, le chapitre 7 introduit l’utilisation
de SRv6 pour diriger le premier paquet (TCP SYN) d’une requête au travers d’une châıne de deux
applications candidates aléatoires, chacune d’entre elles décidant successivement si elle peut ou non
accepter la requête, selon son état local. Ceci permet d’avoir un mécanisme d’équilibrage de charge
qui prend en compte les états courants des applications, directement au sein de la couche réseau,
et sans recourir à une observation centralisée de l’état des applications. Pour éviter un trafic tri-
angulaire non nécessaire, les paquets suivants sont envoyés directement à l’instance ayant accepté
la connection. Ceci est accompli grâce à un protocole de signalisation intra-bande, en utilisant des
fonctions SRv6 dédiées entre les équilibreurs de charges et les serveurs afin d’installer et de retirer
l’état nécessaire pour chaque connexion. La fiabilité du mécanisme au regard des changements
de l’ensemble des équilibreurs de charge et/ou des applications est assurée grâce à un hachage
cohérent qui assigne les flux à des listes (et non pas des singletons) d’instances d’applications. Un
modèle mathématique du temps de réponse observé par les clients est ensuite introduit, pour des
arrivées Poisson et des services suivant une loi exponentielle. Grâce à ce modèle, il est possible de
quantifier les bénéfices de l’approche proposée en termes d’espérance du temps de réponse (ainsi
que de la queue de la distribution correspondante), d’équité de charge des serveurs, et de réduction
d’énergie. L’analyse démontre que, sous l’hypothèse raisonnable que le délai réseau unidirectionnel
entre deux machines est inférieur au temps de service moyen, les performances en temps de réponse
sont toujours améliorées, comparé à de l’équilibrage de charge aléatoire (théorème 7.1). L’archi-
tecture proposée a été implémentée comme module pour un routeur virtuel (VPP), qui extrait de
manière transparente des informations d’un serveur HTTP standard (Apache) grâce à une mémoire
partagée, et utilise ces informations pour prendre des décisions d’acceptation de connexion. Une
évaluation conduite sur une plateforme d’essai comprenant 48 instances, et utilisant à la fois du
trafic synthétique et des traces réelles, confirme ces bénéfices. L’évaluation montre notamment
qu’il est possible de fournir la même qualité de service moyenne aux clients (i.e., le même temps de
réponse moyen), tout en réduisant le nombre de machines virtuelles nécessaires de 17% comparé à
l’équilibrage de charge aléatoire.

Le chapitre 8 (publié dans [85]) explore ensuite la faisabilité d’implémenter, dans des périphé-
riques matériels, une architecture d’équilibrage de charge sans état et utilisant les charges
instantanées des applications. En effet, implémenter des équilibreurs de charge dans des
périphériques matériels est désirable pour des raisons d’efficacité et de passage à l’échelle. Cepen-
dant, ceci est incompatible avec le maintien d’état par connexion, ce qui est notamment requis par
les architectures utilisant les charges instantanées des applications. Pour contourner ce problème,
le chapitre 8 explore l’utilisation de canaux cachés (covert channels) pour transporter cet état
directement dans les en-têtes des paquets. Les connexions sont établies grâce au même mécanisme
que dans le chapitre 7 : les paquets d’établissement de connexion sont envoyés à travers une châıne
d’applications candidates, jusqu’à ce que l’une d’entre elles accepte (selon son état instantané) de
servir la requête. Cependant, au lieu d’installer de l’état dans l’équilibreur de charge, l’instance
qui a accepté la connexion communique au client sa position dans la liste SRv6, via un canal
caché. Cette valeur est alors automatiquement reflétée par le client jusqu’à atteindre l’équilibreur
de charge, qui peut ensuite utiliser cette information pour diriger le paquet vers le serveur ayant
initialement accepté la connexion. Pour réaliser un tel canal caché en pratique et permettre son
utilisation par des clients standards et non-modifiés, le chapitre 8 propose d’utiliser les bits de poids
faible des estampille de temps (timestamps) du protocole TCP. De plus, l’équilibreur de charge
s’assure de la fiabilité du système en cas de changement de l’ensemble des applications, grâce à un
versionnage des tables de hachage cohérent – ainsi, les paquets se voient insérer un en-tête SRv6
comprenant les instances qui étaient précédemment retournées par la fonction de hachage cohérent.
Un prototype a été réalisé sur une carte réseau reprogrammable (utilisant le langage P4 [200] et
ciblant la plateforme NetFPGA-SUME [201]), prourant la faisabilité d’implémentation de cette
architecture. Des simulations paquet par paquet de cette implémentation montrent que la latence
due à l’analyse des en-têtes des paquets est négligeable (de l’ordre de 10 µs). Des simulations
du mécanisme de hachage cohérent proposé montrent que la fiabilité est améliorée d’un ordre de
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grandeur, comparé à des mécanismes n’utilisant pas le versionnage. En résumé, cette architecture
permet d’obtenir les mêmes bénéfices que ceux introduits au chapitre 7, tout en bénéficiant d’une
implémentation matérielle à faible latence et haut débit, et en améliorant la fiabilité du hachage
cohérent.

Le chapitre 9 (soumis en tant que [86]) introduit une architecture d’auto-équilibrage sans
observation centralisée, utilisant SRv6. Afin de satisfaire les variations journalières en demande
de trafic tout en satisfaisant un niveau de service prédéfini, les centres de données utilisent tradi-
tionnellement l’auto-équilibrage (autoscaling) afin d’adapter en temps réel le nombre d’instances
répliquées d’un service donné. Les auto-équilibreurs utilisent des architectures centralisées pour
prendre ces décisions, ce qui induit un surcoût d’observation. Dès lors, le chapitre 9 étudie l’uti-
lisation de SRv6 pour fournir un service commun de distribution de charge et d’auto-équilibrage,
sans observation centralisée. Les instances de l’application répliquée sont ordonnées le long d’une
châıne fixe, et les nouvelles requêtes sont envoyées le long de cette châıne, jusqu’à ce que l’une
d’entre elles accepte de servir la connexion – et ce en utilisant le plan de données introduit au
chapitre 7. De plus, la dernière instance de la châıne garde trace de l’historique de son propre état
de charge afin de déclencher l’ajout ou le retrait d’un serveur en fin de châıne. En effet, le fait que la
dernière instance de la châıne reçoive trop peu (ou trop) de requêtes est un indicateur que la châıne
est sur-provisionnée (ou sous-provisionnée). Un modèle de Markov de la performance du système
est introduit, et permet d’exprimer stochastiquement le nombres de requêtes servies par chaque
serveur. Ce modèle est résolu grâce à la technique RRR (Recursive Renewal Reward [208]), ce qui
permet d’exprimer, pour de petites châınes, l’espérance du temps de réponse perçu par les clients
– et ainsi d’en déduire les gains possibles d’énergie offerts par le système (i.e., la réduction possible
du nombre de serveurs requis pour assurer la même qualité de service qu’avec de l’équilibrage de
charge aléatoire). L’architecture a été implémentée en tant que module pour VPP, et une évaluation
avec des traces de trafic confirme que ces bénéfices peuvent également être observés dans des en-
vironnements réels. Ainsi, comparé à l’équilibrage de charge aléatoire, le même temps de réponse
moyen peut être offert aux clients, tout en réduisant le nombre de machines virtuelles nécessaires,
et en diminuant simultanément la queue de la distribution de temps de service.

Enfin, le manuscrit de thèse se termine par une conclusion donnée en partie V.
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virtual machines including local persistent state,” in Proc. 3rd international conference on
Virtual execution environments. ACM, 2007, pp. 169–179.

[97] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 5, pp. 95–103, 2008.

[98] Q. Li, J. Huai, J. Li, T. Wo, and M. Wen, “HyperMIP: Hypervisor controlled mobile IP for
virtual machine live migration across networks,” in Proc. 11th IEEE High Assurance Systems
Engineering Symposium (HASE). IEEE, 2008, pp. 80–88.

[99] H. Watanabe, T. Ohigashi, T. Kondo, K. Nishimura, and R. Aibara, “A performance im-
provement method for the global live migration of virtual machine with IP mobility,” in Proc.
5th International Conference on Mobile Computing and Ubiquitous Networking (ICMU),
vol. 94, 2010, pp. 1–6.

[100] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pujolle, “Achieving sub-
second downtimes in large-scale virtual machine migrations with LISP,” IEEE Transactions
on Network and Service Management, vol. 11, no. 2, pp. 133–143, 2014.

https://rfc-editor.org/rfc/rfc6275.txt


BIBLIOGRAPHY 173

[101] U. Kalim, M. K. Gardner, E. J. Brown, and W.-c. Feng, “Seamless migration of virtual
machines across networks,” in Proc. 22nd International Conference on Computer Commu-
nications and Networks (ICCCN). IEEE, 2013, pp. 1–7.

[102] D. M. F. Mattos and O. C. M. B. Duarte, “XenFlow: Seamless migration primitive and
quality of service for virtual networks,” in Proc. IEEE Global Communications Conference
(GLOBECOM). IEEE, 2014, pp. 2326–2331.

[103] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload placement and migration in
distributed sustainable datacenters,” in Proc. IEEE 28th International Parallel & Distributed
Processing Symposium (IPDPS). IEEE, 2014, pp. 307–316.

[104] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and S. Banerjee, “Application-
aware virtual machine migration in data centers,” in Proc. IEEE Conference on Network
Communications (INFOCOM). IEEE, 2011, pp. 66–70.

[105] D. Huang, Y. Gao, F. Song, D. Yang, and H. Zhang, “Multi-objective virtual machine
migration in virtualized data center environments,” in Proc. IEEE International Conference
on Communications (ICC). IEEE, 2013, pp. 3699–3704.

[106] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of data center
traffic: measurements & analysis,” in Proc. 9th ACM SIGCOMM conference on Internet
measurement (IMC). ACM, 2009, pp. 202–208.

[107] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks with
traffic-aware virtual machine placement,” in Proc. IEEE Conference on Network Communi-
cations (INFOCOM). IEEE, 2010, pp. 1–9.

[108] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo: Network-aware task place-
ment for cloud applications,” in Proc. 13th ACM SIGCOMM conference on Internet mea-
surement (IMC). ACM, 2013, pp. 191–204.

[109] T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. De Rose, “Server consolidation
with migration control for virtualized data centers,” Future Generation Computer Systems,
vol. 27, pp. 1027–1034, 2011.

[110] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and N. Pissinou, “Joint
host-network optimization for energy-efficient data center networking,” in Proc. IEEE 27th
International Parallel & Distributed Processing Symposium (IPDPS). IEEE, 2013, pp. 623–
634.

[111] N. Liu, Z. Dong, and R. Rojas-Cessa, “Task and server assignment for reduction of en-
ergy consumption in datacenters,” in Proc. 11th IEEE International Symposium on Network
Computing and Applications (NCA). IEEE, 2012, pp. 171–174.

[112] F. L. Pires and B. Báran, “Virtual machine placement literature review,” arXiv preprint,
vol. abs/1506.01509, 2015. [Online]. Available: http://arxiv.org/abs/1506.01509

[113] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Network-aware virtual machine
placement and migration in cloud data centers,” in Emerging Research in Cloud Distributed
Computing Systems, S. Bagchi, Ed. IGI Global, 2015, ch. 2, pp. 42–91.

[114] Z. Usmani and S. Singh, “A survey of virtual machine placement techniques in cloud data
center,” Procedia Computer Science, vol. 78, pp. 491–498, 2016.

[115] W. Fang, X. Liang, S. Li, Chiaraviglio, and N. Xiong, “VMPlanner: Optimizing virtual
machine placement and traffic flow routing to reduce network power costs in cloud data
centers,” Computer Networks, vol. 57, no. 1, pp. 179–196, 2013.

[116] T. Chen, X. Gao, and G. Chen, “Optimized virtual machine placement with traffic-aware
balancing in data ceter networks,” Scientific Programming, vol. 6, pp. 1–10, 2016, article ID
3101658.

http://arxiv.org/abs/1506.01509


174 BIBLIOGRAPHY

[117] S. Fang, R. Kanagavelu, B.-S. Lee, C. H. Foh, and K. M. M. Aung, “Power-efficient virtual
machine placement and migration in data centers,” in Proc. IEEE International Conference
on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing. IEEE Computer Society, 2013, pp. 1408–1413.

[118] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in virtualized data
center environments,” in Proc. IEEE/ACM International Conference on Green Computing
and Communications & IEEE/ACM International Conference on Cyber, Physical and Social
Computing. IEEE Computer Society, 2010, pp. 179–188.

[119] ——, “A multi-objective approach to virtual machine management in datacenters,” in Proc.
8th ACM international conference on Autonomic computing (ICAC). ACM New York, NY,
USA, 2011, pp. 225–234.

[120] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system algo-
rithm for virtual machine placement in cloud computing,” Journal of Computer and System
Sciences, vol. 79, pp. 1230–1242, 2013.
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Titre : Protocoles de couche réseau pour l’extensibilité des centres de données

Mots clés : Réseaux de centres de données, Mobilité, Multicast, Équilibre de charge, Segment Routing

Résumé : Du fait de la croissance de la de-

mande en ressources de calcul, les architectures

de centres de données gagnent en taille et com-

plexité. Dès lors, cette thèse prend du recul par

rapport aux architectures réseaux traditionnelles, et

montre que fournir des primitives génériques direc-

tement à la couche réseau permet d’améliorer l’utili-

sation des ressources, et de diminuer le trafic réseau

et le surcoût administratif. Deux architectures réseaux

avancées, Segment Routing (SR) et Bit-Indexed Ex-

plicit Replication (BIER), sont utilisées pour construire

et analyser des protocoles de couche réseau, afin de

fournir trois primitives : (1) mobilité des tâches, (2) dis-

tribution fiable de contenu, et (3) équilibre de charge.

Premièrement, pour la mobilité des tâches, SR est

utilisé pour fournir un service de migration de ma-

chine virtuelles sans perte. Cela ouvre l’opportunité

d’étudier comment orchestrer le placement et la mi-

gration de tâches afin de (i) maximiser le débit inter-

tâches, tout en (ii) maximisant le nombre de nouvelles

tâches placées, mais (iii) minimisant le nombre de

tâches migrées. Deuxièmement, pour la distribution

fiable de contenu, BIER est utilisé pour fournir un pro-

tocole de multicast fiable, dans lequel les retransmis-

sions de paquets perdus sont cibleés vers l’ensemble

précis de destinations n’ayant pas reçu ce paquet :

ainsi, le surcoût de trafic est minimisé. Pour diminuer

la charge sur la source, cette approche est étendue

en rendant possibles des retransmissions par des

pairs locaux, utilisant SR pour trouver un pair capable

de retransmettre. Troisièmement, pour l’équilibre de

charge, SR est utilisé pour distribuer des requêtes

à travers plusieurs applications candidates, chacune

prenant une décision locale pour accepter ou non

ces requêtes, fournissant ainsi une meilleure équité

de répartition comparé aux approches centralisées.

La faisabilité d’une implémentation matérielle de cette

approche est étudiée, et une solution (utilisant des

canaux cachés pour transporter de façon invisible

de l’information vers l’équilibreur) est implémentée

pour une carte réseau programmable de dernière

génération. Finalement, la possibilité de fournir de

l’équilibrage automatique comme service réseau est

étudiée : en faisant passer (avec SR) des requêtes

à travers une chaı̂ne fixée d’applications, l’équilibrage

est initié par la dernière instance, selon son état local.

Title: Network-Layer Protocols for Data Center Scalability

Keywords: Data-center networking, Task Mobility, Multicast, Load Balancing, Segment Routing

Abstract: With the development of demand for com-

puting resources, data center architectures are grow-

ing both in scale and in complexity. In this context,

this thesis takes a step back as compared to tradi-

tional network approaches, and shows that provid-

ing generic primitives directly within the network layer

is a great way to improve efficiency of resource us-

age, and decrease network traffic and management

overhead. Using two advanced network architectures,

Segment Routing (SR) and Bit-Indexed Explicit Repli-

cation (BIER), network layer protocols are designed

and analyzed to provide three high-level functions: (1)

task mobility, (2) reliable content distribution and (3)

load-balancing.

First, task mobility is achieved by using SR to provide

a zero-loss virtual machine migration service. This

then opens the opportunity for studying how to or-

chestrate task placement and migration while aiming

at (i) maximizing the inter-task throughput, while (ii)

maximizing the number of newly-placed tasks, but (iii)

minimizing the number of tasks to be migrated. Sec-

ond, reliable content distribution is achieved by using

BIER to provide a reliable multicast protocol, in which

retransmissions of lost packets are targeted towards

the precise set of destinations having missed that

packet, thus incurring a minimal traffic overhead. To

decrease the load on the source link, this is then ex-

tended to enable retransmissions by local peers from

the same group, with SR as a helper to find a suit-

able retransmission candidate. Third, load-balancing

is achieved by way of using SR to distribute queries

through several application candidates, each of which

taking local decisions as to whether to accept those,

thus achieving better fairness as compared to central-

ized approaches. The feasibility of hardware imple-

mentation of this approach is investigated, and a so-

lution using covert channels to transparently convey

information to the load-balancer is implemented for a

state-of-the-art programmable network card. Finally,

the possibility of providing autoscaling as a network

service is investigated: by letting queries go through

a fixed chain of applications using SR, autoscaling is

triggered by the last instance, depending on its local

state.
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