
A Content-aware Data-plane for Efficient
and Scalable Video Delivery (tech. rep)

Yoann Desmouceaux∗†, Marcel Enguehard∗‡, Victor Nguyen∗, Pierre Pfister∗, Wenqin Shao∗‡, Éric Vyncke∗
∗Cisco Systems †École Polytechnique ‡Telecom ParisTech

{firstname.lastname}@cisco.com

Abstract—Internet users consume increasing quantities of
video content with higher Quality of Experience (QoE) expec-
tations. Network scalability thus becomes a critical problem
for video delivery as traditional Content Delivery Networks
(CDN) struggle to cope with the demand. In particular, content-
awareness has been touted as a tool for scaling CDNs through
clever request and content placement. Building on that insight, we
propose a network paradigm that provides application-awareness
in the network layer, enabling the offload of CDN decisions to the
data-plane. Namely, it uses chunk-level identifiers encoded into
IPv6 addresses. These identifiers are used to perform network-
layer cache admission by estimating the popularity of requests
with a Least-Recently-Used (LRU) filter. Popular requests are
then served from the edge cache, while unpopular requests
are directly redirected to the origin server, circumventing the
HTTP proxy. The parameters of the filter are optimized through
analytical modeling and validated via both simulation and
experimentation with a testbed featuring real cache servers.
It yields improvements in QoE while decreasing the hardware
requirements on the edge cache. Specifically, for a typical content
distribution, our evaluation shows a 22% increase of the hit rate,
a 36% decrease of the chunk download-time, and a 37% decrease
of the cache server CPU load.

I. INTRODUCTION

Traffic from Video-on-Demand (VoD) and linear video
streaming is projected to amount to 74 TB/s by 2021, thus
representing 82% of the Internet traffic [1]. Not only does
video consumption increase in terms of consumed hours,
but expectations for Quality of Experience (QoE) are also
becoming higher: better video quality, better start-up times,
fewer re-buffering events, etc. In that regard, Content Delivery
Networks (CDN) are the most common tool for scaling the net-
work while providing better QoE [1]. However, the sheer scale
of video traffic raises stringent engineering challenges [2].
Amongst those challenges, optimizing the use of resources
(network, storage, and compute) is probably the most crucial.
Indeed, as the load on edge caches increases, simply scaling
up by using more machines is not sufficient to meet QoE
requirements.

Thus, researchers have focused on addressing the chal-
lenge of serving more requests with better QoE while using
fewer resources. In particular, seminal work argued for using
content-awareness to perform traffic engineering (TE) [3]. The
authors proposed to transfer the responsibility for TE from

This work benefited from the support of NewNet@Paris, Cisco’s Chair
NETWORKS FOR THE FUTURE at Telecom ParisTech (https://newnet.telecom-
paristech.fr). The authors are grateful towards Thomas H. Clausen for his
detailed comments which helped improve this manuscript.

the Internet Service Provider (ISP) to the CDN, using ISP
network monitoring information to influence server selection
through the CDN DNS system. The TE is limited to server
selection since the ISP network has no application-knowledge.
Similarly, [4] proposes to build an overlay routing graph
for video chunks between edge caches. The routing plane is
used to redirect incoming requests to a server that has the
corresponding chunk and to make local caching decisions.
The reliance on an overlay routing plane at the application
layer raises scalability issue as HTTP(S) proxies are known to
decrease QoE [5]. These two pieces of work are limited by the
lack of integration between the network and application layers,
which raises capacity and scalability problems. Information-
Centric Networking (ICN) [6], [7] tackles that specific issue,
using content identifiers instead of network locators to perform
hop-by-hop forwarding. The use of content identifiers as
network addresses provides application-knowledge to the data-
plane and has fostered research in joint-optimization of request
forwarding and content-placement in cache networks [8], [9],
[10], [11]. However, ICN architectures require fundamental
changes to the way current networks are built and their
deployment would require considerable efforts.

In this paper, we introduce a novel network design for
video CDNs that uses standardized and deployed network
technologies to bring application-knowledge in the network
layer. The proposed approach relies on two main building
blocks: (i) chunk-level content addressing and (ii) in-network
server selection. First, chunk-level content addressing consists
in assigning a unique and globally routable IPv6 address to
each video chunk. Exposing the chunk and video identifiers
into the IPv6 addresses space provides visibility about the
requested content into the network layer. Second, in-network
server selection takes advantage of the identifiers exposed as
IP addresses to make in-band request forwarding decisions. We
build on 6LB [12], a load-balancing framework which uses
IPv6 Segment Routing (SRv6) [13] to steer client requests
through a chain of candidate servers. These servers make
local decisions on whether to serve the queries or forward
them to the next server in the chain. In [12], 6LB is used
to blindly steer requests between idempotent servers for load-
balancing purposes. Our work differs in two major ways: first,
CDN architectures are essentially vertical and requests must
be forwarded first to an edge proxy and then (if the edge proxy
refuses to serve the request) to an origin server; second, we can
use the video chunk identifiers encoded in the IPv6 addresses

to decide without needing to terminate HTTP sessions whether
to serve the query at a given proxy. We thus enrich 6LB with
content-awareness. Since our approach relies on standardized
technologies, it is deployable in today’s Internet.

In particular, upon arrival of a request at an edge proxy, the
network-level chunk identifier is used to predict whether the
chunk might be available in the cache. If not, 6LB is used
to forward requests directly to the origin instead of proxying
them at the edge cache, thus reducing the load on the edge
cache and avoiding the negative effects on QoE. To predict
the presence in the cache, we build on prior work by using
a Least-Recently-Used (LRU) filter [14], which can be used
to probabilistically estimate the popularity of a given chunk.
Compared to [14], which optimizes offload costs for Fog
applications under latency constraints, the decisive metric for
video CDNs is the hit rate of the edge cache. We thus construct
an analytical model to evaluate it and provide guidelines for
tuning the LRU filter accordingly. 6LB then acts as a concrete
and deployable framework for implementing the LRU filter.

The contributions of this paper are summarized below:
• Video addressing scheme: We propose an encoding for

video/content ID into the IPv6 network address space to
facilitate fine-grained analytics and in-network decision-
making. This encoding allows corresponding queries to
be routed over the global Internet.

• In-network server selection: We introduce a decentral-
ized request placement technique that uses an LRU filter
to decide in the network layer whether to accept requests
at an edge proxy. Upon rejection, 6LB is used to forward
the request to the origin, avoiding the proxying step.
Using an analytical model validated through simulation,
we provide settings to achieve the optimal hit rate without
prior knowledge of the request pattern.

• Realistic environment evaluation: We evaluate our ap-
proach by implementing it in an open-source software
router [15] and using a standard unmodified HTTP cache
server [16]. The setup shows substantial improvements
in terms of cache hit rate (+20%), video chunk download
time (-36%), and edge cache CPU load (-37%).

II. A CONTENT-AWARE DATA PLANE FOR VIDEO DELIVERY

Multi-tiered video CDN architectures, as illustrated in Fig-
ure 1, consist of three main components [17]: (i) clients
who request and consume video chunks, (ii) origin servers
that serve content, and (iii) edge caches, located closer to
the clients, e.g., in an ISP network, which store the most
popular video chunks to reduce the load on the origin servers.
Achieving high hit rates in edge caches is essential to the
scaling of CDN architectures, as this decreases the load on
the origin servers. Moreover, the hit rate on edge caches has a
strong impact on QoE factors, such as chunk download time:
[5] reports that cache misses increase server latency by up to
an order of magnitude, which in turn translate into increased
client start-up times. According to [5], this degradation of
server latency is notably due to the cost of proxying HTTP(S)
connections to the origin server. However, as the load on

Edge Proxy

Client

Origin

1. H
TTP(s) q

uery
3a. R

esponse

3b. New HTTP(S) query 4b. Response

5b. Response
2. Cache hit

(a) or miss (b)

Fig. 1. Proxy-based CDN architecture: clients issue HTTPS queries to an
edge proxy that either replies back upon cache hit, or terminates the session
and fetches the content from an origin server upon cache miss.

Routing prefix + subnet ID

64

Content Identifier

e.g. bitrate, DASH
manifest +

chunk duration +
chunk seq.

number

Content naming with IPv6 address

Stream Type Service ID Content Descriptor chunk Descriptor

2 12 26 24

64

e.g. Show ID +
Episode ID

(field length in bits)

Fig. 2. Naming scheme: IDs and metadata encoded within IPv6 addresses.

edge caches increases, simply using more powerful machines
and/or adding machines raises stringent economical issues.
The approach introduced in this paper thus aims at not only
increasing the hit rate at the edge but also reducing the
impact of the cache misses. To that end, we rely on two main
components: network-layer video chunk naming (Section II-A)
and 6LB-based server selection (Section II-B).

A. Naming Scheme

The fundamental characteristic of our architecture is the use
of named-video chunks (e.g., DASH [18] or HLS segments)
in the forwarding plane. Our proposal borrows concepts from
Information-Centric Networking (ICN) [6], [7] (without of-
fering all ICN features, e.g., native multicast) while aiming
at deployability in current IP-based networks. As in ICN, we
match each video segment with a unique network identifier: a
64-bits encoding is used, as described in Figure 2. It contains
the video identifier, the identifier of the segment within the
video, and potentially additional metadata such as the segment
duration and the requested video bitrate/quality. We then build
an IPv6 address from this name: (i) the first 64 bits are a prefix
that is specific to the video producer and acts as a network
locator; (ii) the 64-bits suffix contains the aforementioned
video metadata and acts as a content identifier. On our website,
we provide a tool to easily convert video chunk names to IPv6

Virtual Router

Client

Origin

SR dispatcher
2. Insert SR header

Edge Proxy App

4. Local decision:
local (a) or origin (b)

Edge Proxy

5a. Cache hit
(aa) or miss (ab)

3. T
CP SY

N (c,e
,o)

1. TCP SYN (c)

4b. TCP SYN (c,e,o)

5b
. D

ire
ct

 re
sp

on
se

4a
. T

C
P

SY
N

5ab. New HTTP(S) query

6ab. Response

7ab. Proxied response after
cache miss

6aa. Response after
cache hit

Fig. 3. 6LB-based CDN architecture: clients issue HTTPS queries to a
dispatcher, which adds an SR header with the address of an edge and an
origin. The data-plane at the edge decides to dispatch the query to the origin
(without proxying), or locally to the proxy server.

addresses and vice-versa1. Our approach thus uses globally
routable IPv6 packets while providing visibility of the content
identifier within the forwarding plane. In addition, exposing
these video metadata into the IP addressing space enables fine-
grained analytics (e.g., eyeball time) to be gathered by standard
network flow analyzers. The rest of the network stack uses
traditional internet protocols: TCP/TLS/HTTP.

B. 6LB-based Server Selection

Traditional CDN architectures (as depicted in Figure 1)
make use of layer-7 proxies and DNS resolution [19], [17] to
provide caching capabilities. When issuing an HTTP request
for a piece of content, clients are directed to the geographically
closest edge cache (1), which terminates the HTTP connection
and replies with a cached copy of the content if available (2a)
or opens another HTTP connection to an origin server (2b-
3b) and replies to the client with the newly fetched content
(4b) while possibly caching it (see Figure 1). A drawback of
this architecture lies in the performance cost of terminating
the client HTTP connection in case of a cache miss at the
edge cache, especially when using TLS [20]. Furthermore,
TCP/IP stacks provided by the native Linux kernel (often used
in popular HTTP caching servers) are known to be inefficient
due to context switches and the lack of batching [21], [22].
Given these limitations, when it is not beneficial to cache the
content at the edge (e.g., because it is unpopular), a more
efficient approach would be to bypass the edge and open
a direct connection between the origin server and the client
rather than resorting to HTTP proxying.

To achieve in-network server selection, this paper builds on
6LB [12]. 6LB leverages SRv6 [23], a networking architecture
standardized in RFC 8402 [13], which allows packets to
traverse a source-specified sequence of “segments” represented
by IPv6 addresses. SRv6 uses an IPv6 extension header [24]
and allows traversal through SR-unaware nodes, and as such
is deployable in any IPv6 network. Following the principle
introduced in [12], 6LB-based server selection is performed
as described in Figure 3:

1http://demo.6cn.solutions/nf/decode2.php

• A dispatcher advertises routes towards the (anycast) con-
tent prefix and catches traffic addressed to this prefix. The
location of the dispatcher is flexible: it can be integrated
within the client’s network stack, pushed to a set-top box
in the client’s premises, set in a gateway router at the
entry of the Point of Presence (PoP) closest to the client,
or co-located with the edge cache.

• Upon receipt of a TCP SYN, the dispatcher inserts an
SRv6 header in the packet containing the list (e, o, c),
where e is the address of an edge cache capable of serving
the content, o is the address of the origin server, and c is
the anycast address of the content (the original destination
address of the packet).

• When receiving this SYN packet, the data-plane at the
edge cache e decides to either (i) accept the connection
and pass the SYN packet to its local HTTP cache server
or (ii) refuse the connection and pass the packet to o
without going through the local HTTP server.

• Downstream packets from e or o are sent and routed
directly to the client.

• Subsequent (non-SYN) packets from the client corre-
sponding to the same connection also reach the dispatcher
and an SRv6 header with (e, c) or (o, c) is inserted, de-
pending on whether e or o has accepted the connection2.

The advantages of this approach are threefold. First, Direct
Server Return (DSR) [25], [26] takes place between the server
that has accepted the connection and the client: packets from
the selected server directly reach the client. The load on
the dispatcher is thus greatly reduced. Second, this approach
increases QoE by (i) reducing the load on the proxy server
because some requests are now directly sent to the origin
server and (ii) reducing the response time for these requests by
removing the proxying overhead. Third, it offers management
benefits as any local, pluggable policy can be used at the edge
cache to decide whether to accept a connection. For example,
decisions can be made depending on the current load of the
server, an estimation of the popularity of the content, or a
combination of both.

Note that, while the dispatcher could work at the application
layer (e.g., through DPI or proxying), its implementation
directly in the network layer via the identifiers exposed in
the IPv6 address yields a higher throughput (due to DSR and
per-packet operation) and thus scalability. Indeed, it means
that the dispatcher can be implemented using state-of-the-art
software routers (see Section IV-A) or even in hardware.

III. AN EXAMPLE OF DATA-PLANE ENABLED
APPLICATION: IN-NETWORK EDGE ADMISSION CONTROL

As described in Section II-B, the combination of per-
content naming and in-network server selection allows of-
floading certain client requests transparently to an upstream
server through in-data-plane decisions. This section introduces

2The dispatcher is notified, in-band, of the identity of the accepting server.
This is achieved by steering (with SR) the first downstream packet to the
dispatcher, and embedding the address of the accepting server therein, as
described in [12].

http://demo.6cn.solutions/nf/decode2.php

Virtual Router

Edge Proxy App

2. LRU filter insert+lookup
3. Local decision: local if filter hit (a)
or origin if filter miss (b)

4a. Cache hit (aa) or miss (ab)

1. TCP SYN (c,e,o)

3a
. T

CP
 S

Y
N

4ab. New HTTP(S)
query if cache miss

3b. TCP SYN (c,e,o)

Fig. 4. LRU filter as in data-plane acceptance policy. Queries are either (3a)
routed locally to the edge cache or (3b) routed to the origin. In case (3a), the
edge cache has to proxy the connection in case of edge cache miss.

an in-data-plane popularity-aware edge admission policy that
takes advantage of this capability. This policy decides which
requests are better served at the edge cache or at the origin
server by continuously adapting to the client request pattern
– thus increasing the hit rate and protecting the edge from
proxying unpopular requests.

A. Network-layer Acceptance Policy for Edge Proxies

The cache admission policy presented in this paper consists
in pre-selecting popular content at the network-layer before
handing it to a (black-box) edge cache. In particular, we take
advantage of the naming scheme described in Section II-A
to profile the popularity of content within the data-plane. An
efficient admission module should indeed aim at accepting
only requests for popular content at the edge, thus increasing
the hit-rate. Conversely, unpopular content (that should not
be cached) can be directed to the origin server without going
through the edge proxy. Based on [14], [8], we build an in-
data-plane filter admission policy that uses an LRU meta-cache
to decide whether requests should be handled at the edge or
forwarded upstream: this is called an LRU filter [14].

This LRU filtering module has an identifier cache C of
size C1, which is an LRU meta-cache storing the identifiers
(i.e., content addresses) of the lastly-requested video chunks.
Upon arrival of a TCP SYN packet with an SRv6 header
(e, o, c) for content c at the LRU filter of an edge cache:
• If c /∈ C, c is deemed unpopular and the packet is

forwarded to the origin server o (bypassing the edge e).
In addition, c is added to the head of C (and the last entry
of C is removed if C is full).

• If c ∈ C, this is (at least) the second time that c has been
requested since c has entered C and thus c is deemed
popular: the packet is forwarded to the edge e. In addition,
c is moved back to the head of C.

Hence, with high probability, unpopular content is not
served by the edge cache but rather directly offloaded (at the
network layer) to the origin server. The offloaded connections
no longer need to be proxied at the edge, thus avoiding
unnecessary HTTP terminations and the cache of the edge
proxy is not polluted with unpopular content, consequently
increasing the hit rate.

B. Optimal sizing of the LRU Filter

The LRU filter has a single tunable parameter, the size of the
identifier cache C1, whose influence is studied in this section.

When C1 = 0, all requests are deemed unpopular by the
filter and are thus served by the origin server – equivalent to
disabling edge caching. Conversely, if C1 is greater than the
total number of objects, all requests are handed to the edge
proxy – equivalent to having no filter. The remainder of this
section presents an analytical model for determining the size
C1 yielding the best hit rate and quantifies the benefits versus
having no filter.

To make the model tractable, we make the assumption that
the object cache in the HTTP edge proxy uses an LRU caching
policy. Since it is desirable to maximize the use of the edge
cache while minimizing the number of proxied requests, the
metric that we optimize is the global hit rate at the edge cache.
This is to be understood as the ratio of queries that are served
by the cache without proxying – in other words, those that
result in a hit at the LRU filter followed by a hit at the edge
cache.

Let us fix notation for the remainder of the paper. We
consider a catalog of size N , in which objects have a Zipf
popularity of parameter α > 0. Denoting by q(n) the (un-
normalized) popularity of the n-th most popular object, this
means that q(n) = 1/nα. We assume that the filter has size
C1 = δ1N , and that the edge cache has size C2 = δ2N , where
δ1, δ2 ∈ (0, 1) are (fixed) cache/catalog size ratios. We assume
large catalogs, as is the case in real-life CDNs, and therefore
make the assumption that N →∞.

The aim of the optimization is to, given a cache size δ2,
find the filter size δ1 which maximizes the global hit rate.
To that purpose, four steps are taken. First, we derive an
expression of the hit rate and the characteristic time3 of both
the LRU filter and the edge cache. Second, we approximate
these characteristic times, assuming N →∞. Third, with the
help of these approximations, the global hit rate of the system
can be estimated for N → ∞. Finally, having expressed the
global hit rate as a function of δ1, δ2, we can derive the optimal
filter size δ1, with respect to the cache size δ2.

1) Deriving the Hit Rates and Characteristic Times: Ac-
cording to Che’s approximation [27], the hit rate of the n-th
content at the filter can be estimated as:

h1(n) = 1− e−q(n)t1 (1)

where t1 (the characteristic time of the filter) is the unique
solution to:

C1 =

N∑
n=1

(1− e−t1·q(n))⇔ δ1 =
1

N

N∑
n=1

(1− e−t1/n
α

) (2)

With respect to the edge cache, the filter acts as a pre-
processing that un-skews the popularity distribution of the
objects. The popularity as seen by the edge cache is then:

q2(n) = q(n)h1(n) = h1(n)/nα (3)

3The characteristic time is a metric qualifying the behaviour of a caching
system that proves useful to estimate the hit rate of each individual content,
according to [27].

Using Che’s approximation again, the hit ratio of the n-th
content at the edge cache is:

h2(n) = 1− e−q2(n)t2 = 1− e−t2h1(n)/n
α

(4)

where t2 (the characteristic time of the edge cache) is the
unique solution to:

C2 =

N∑
n=1

(1− e−t2·q2(n))⇔ δ2 =
1

N

N∑
n=1

(1− e−t2·h1(n)/n
α

)

(5)

2) Estimating the Characteristic Times: When N →∞, a
first-order approximation of the characteristic time of the filter,
t1, can be computed as (according to [28]):

t1 = ψ−1(δ1)Nα +O(Nα−1) (6)

where ψ(β) :=
∫ 1

0
(1−e−β/xα)dx for β ∈ [0,+∞) (as defined

in [28]). In particular, ψ(β) is the average size of an LRU
cache when the average sojourn time is β.

Using this approximation to compute q2(n) (the popularity
as seen by the edge cache), it is possible to further compute a
first-order approximation of the characteristic time of the edge
cache, t2, as:

t2 = Ψ−1ψ−1(δ1)
(δ2)Nα +O(Nα−1) (7)

where:

Ψγ(β) :=

∫ 1

0

(
1− exp[

−β
xα

(1− e−γ/x
α

)]

)
dx

for β ∈ [0,+∞) and a parameter γ > 0.

Proof of the derivation of (7). Intuitively, the proof consists
of replacing h1(n) with (1−e−ψ−1(δ1)N

α/nα) in equation (5),
thanks to equation (1) and equation (6). Then, similarly as
in [28], the idea is to replace the (pseudo) Riemann sum
1
N

∑N
n=1(1 − exp[− t2/N

α

(n/N)α (1 − e−
ψ−1(δ1)

(n/N)α)] with
∫ 1

0
(1 −

exp[− t2/N
α

xα (1 − e−
ψ−1(δ1)
xα)]dx in equation (5), leading to

δ2 ≈ Ψψ−1(δ1)(
t2
Nα), and finally t2 ≈ Ψ−1ψ−1(δ1)

(δ2)Nα. A rig-
orous proof of convergence can be found in appendix A.

3) Estimating the Hit Probability: The global hit rate H of
the system corresponds to requests that generate a hit in the
filter followed by a hit in the edge cache:

E[H] =

∑N
n=1 q(n)h1(n)h2(n)∑N

n=1 q(n)
(8)

Using the asymptotic approximations of t1 and t2 computed
in Section III-B2, it is possible to derive an approximation of
the global hit rate for N →∞:

E[H] = 1−

(1− α)I(δ1, δ2) +O(1

N) α < 1
1

logN I(δ1, δ2) +O(1
log2N

) α = 1
1

ζ(α)Nα−1 I(δ1, δ2) +O(1
Nα) α > 1

(9)

0.02 0.04 0.06 0.08 0.10
Filter size δ1

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
hi

t
ra

te

α = 0.6

α = 0.7

α = 0.8

α = 0.9

α = 1.0

α = 1.1

α = 1.2

Fig. 5. Verification of the model: E[H] vs δ1 for various values of α for
N=108, δ2 = 0.01. × are simulation points (109 draws each) and dotted
lines are the model prediction.

0.1 0.3 0.5 0.7 0.9
Normalized filter size δ1

0.52

0.54

0.56

0.58

0.60

G
lo

b
al

h
it

ra
te

α = 0.9, δ2 = 0.01

Optimum

Fig. 6. Global hit rate vs filter size δ1 for α=0.9, δ2=0.01.

where ζ(α) =
∑+∞
n=1 1/nα is Riemann’s zeta function, and

I(δ1, δ2) is defined as:

I(δ1, δ2) =

∫ 1

0

1

xα

[
1− (1− e−

ψ−1(δ1)
xα)×

(
1− exp[−

Ψ−1ψ−1(δ1)
(δ2)

xα
(1− e−

ψ−1(δ1)
xα)]

)]
dx

Proof of the derivation of (9). The proof uses similar tools to
the one for (7), and can be found in appendix B.

4) Model verification: In Figure 5, results of the model
(from Equation (9)) are compared to simulation points for
various values of α and δ1 (with fixed N = 108 and
δ2 = 0.01). Each simulation point corresponds to 109 arrivals
in the system. It shows that for most values of α, the model
is an almost perfect fit. Furthermore, while for α = 0.9, there
is a discrepancy (showing the limitations of the assumption
N → ∞ which predicts that E[h] → 1 when α →− 1),
the model results have a similar curvature as the simulations
point and they share the same maximum. Thus, the use of
Equation (9) to derive the optimal parameters of the LRU-
filter is justified.

5) Optimal Sizing of the Filter: The estimation of the hit
rate E[H] computed in Section III-B3 can be used to find
the optimal filter size δ∗1 for a given size of the cache δ2,
defined as the size which maximizes the hit rate of the system

0.01 0.03 0.05 0.07 0.09
Normalized cache size δ2

0.2

0.4

0.6

0.8
N

or
m

al
iz

ed
fi

lt
er

si
ze
δ 1

E
[H

]=
0.

58
E

[H
]=

0.
60

E
[H

]=
0.

62
E

[H
]=

0.
64

E
[H

]=
0.

66
E

[H
]=

0.
68

E
[H

]=
0.

70

Optimum
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Fig. 7. Sizing the LRU filter: heatmap of global hit rate for a cache size
δ2 ∈ [0.01, 0.09] and a filter size δ1 ∈ (0, 1), for a Zipf distribution with
α = 0.9. Black lines are isolines for the global hit rate. Blue lines give the
optimal filter size δ1 as a function of the cache size δ2.

0.01 0.03 0.05 0.07 0.09
Normalized cache size δ2

0.55

0.60

0.65

0.70

G
lo

b
al

h
it

ra
te

LRU filter - optimal
LRU filter - δ1 = δ2

No LRU filter

Fig. 8. Comparison the hit rate of three policies: no LRU filtering, “blind”
LRU filtering (δ1 = δ2) and “optimal” LRU filtering (δ1 = δ∗1(δ2)), for a
Zipf distribution with α = 0.9.

for N → ∞. (Note that, when α ≥ 1, the hit rate of the
system goes to one as N → ∞, therefore for such cases we
define the optimal filter size as the one which minimizes the
first-order term in the asymptotic expansion of the miss rate.)
Given equation (9), δ∗1 can be found by solving the following
optimization problem:

min
δ1∈(0,1)

I(δ1, δ2) (10)

Figure 6 gives an example of such an optimization: for α =
0.9 and δ2 = 0.01, the hit rate when N → ∞ is depicted as
a function of δ1. It can be observed that, when δ1 → 0, the
hit rate vanishes, and that when δ1 → 1, the hit rate reaches
that of a single LRU cache of size δ2. In between, the hit
rate exhibits a bell-curve-like shape, with a maximum attained
when δ1 = 0.067.

C. Numerical Results

Figure 7 depicts a heatmap of the hit rate for α = 0.9
and N → ∞, as a function of (δ1, δ2). It can be observed
that, for a given cache size δ2, the hit rate evolves rapidly for
small values of δ1, reaches an optimum, and then evolves more
slowly for larger values of δ1, before converging to the hit rate
of a single LRU when δ1 = 1. Due to the rapid evolution of
the hit rate when δ1 is smaller than its optimal value, it is,
therefore, preferable to over-estimate δ1 when sizing the filter.

0.01 0.03 0.05 0.07 0.09
Normalized cache size δ∗2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
p

ti
m

al
fi

lt
er

si
ze
δ∗ 1

α = 0.8

α = 0.9

α = 1

α = 1.1

Fig. 9. Optimal size of filter δ∗1 as a function of cache size δ2 for α∈[0.8, 1.1]

TABLE I
FITTING THE OPTIMAL FILTER SIZE δ∗1
AS δ∗1 = BδA2 WHEN δ2 ∈ [0.01, 0.09]

α A B 1−R2

0.75 0.680 1.950 1.45×10−5

0.80 0.694 1.924 7.23×10−5

0.85 0.710 1.911 7.56×10−5

0.90 0.729 1.919 2.23×10−4

0.95 0.748 1.937 2.72×10−4

1.00 0.763 1.936 2.60×10−4

1.05 0.780 1.950 2.82×10−4

1.10 0.799 1.979 4.63×10−4

Figure 8 illustrates the benefits of correctly sizing the LRU
filter, by plotting the hit rate obtained by three policies: (i) no
LRU filter, i.e., just an LRU cache as edge, (ii) “blind” LRU
filtering, where the filter is sized with δ1 = δ2 as in [29],
(iii) “optimal” LRU filtering, where the filter is sized with
δ1 = δ∗1 . For instance, for δ2 = 1%, using the “optimal” LRU
filter offers an improvement of 9% over LRU, whereas using
a “blind” LRU decreases the performance by 3%.

Finally, in order to understand the behavior of the optimal
filter size δ∗1 , Figure 9 represents δ∗1 for caches sizes in
the “reasonable” range δ2 ∈ {1%, 2%, . . . , 9%}. It can be
observed that δ∗1 approximately follows a power law:

δ∗1 ≈ BδA2
where the coefficients A and B only depend on α. Table I
gives the value of A and B obtained by linear regression in
log-log space, with the corresponding R2 value. The closeness
of R2 to 1 confirms the accuracy of this description.

Guideline: Given the results from Table I, it is possible to
provide a simple guideline formula to choose a filter size δ1
as a function of a cache size δ2, for “reasonable” values of
the parameters δ2 and α. Indeed, the coefficients A obtained
in Table I also exhibit a linear dependence on α, and the
coefficients B vary in a narrow range for the considered values.
Therefore, we can define a guideline δ∗g1 as:

δ∗g1 = B̂δCα+D2 (11)

where C,D are obtained by linear regression A(α) ≡ Cα+D
on the points of Table I, and B̂ is the mean of the values of B

TABLE II
REGRESSION OF A(α) AS A(α) = Cα+D AND B(α) AS B̂

C D 1−R2

0.342 0.422 8.36×10−4

B̂

1.938

in Table I. Numerical values of B̂, C,D are given in Table II.
Note that (11) should be seen as a convenient helper to size an
LRU filter, rather than an explanatory model of the underlying
structure.

IV. EXPERIMENTAL TESTBED

This section details the implementation of the proposed
architecture in a realistic testbed. Note that, for lack of access
to commercial solutions and to increase reproducibility , the
testbed is built using state-of-the-art open-source software.

A. Implementation

Two of the modules in Figure 3 have been implemented as
plugins of the high-performance software router VPP [15], and
are available in open-source at [30]: (i) the dispatcher, which
inspects the destination VIP (video chunk ID in IP address) of
packets and inserts SR headers accordingly, and (ii) the server
agent, located in the edge proxy and implementing the LRU
filter described in Section III-A. Upon refusal, the server agent
forwards packets to the next hop in the SRv6 segment list
(the origin server) via its egress interface; upon acceptance,
to a local interface bound to a VM containing the actual
edge proxy. In particular, the LRU-filter is implemented as an
acceptance policy for the 6LB VPP implementation described
in [12], using a linked list to store LRU entries and a flow
table to map IPv6 addresses to the corresponding entries.

B. Testbed Description

To highlight the effects of in-network server selection, we
built a testbed with one dispatcher, one edge proxy and one
origin server. In real deployments, there would likely be more
than one dispatcher and proxy; yet reasoning on a single chain
enables fine-grained understanding of the system’s behavior.

The testbed consists of four physical machines, equipped
with Intel Xeon E5-2667 CPUs (3.20 GHz) and Intel XL710
40 Gbps NICs, connected to a single 40 Gbps fabric, on
which the services are virtualized through KVM [31]. The
first machine plays the role of a query generator, the second
of the dispatcher, the third of the edge proxy, and the last
of the origin server. The VPP dispatcher and the VPP server
agents in the edge proxy and origin server are each pinned
to one CPU thread. The edge proxy VM and origin server
VM are, each, pinned to 4 CPU cores (8 CPU threads).
Locust [32] is used as query generator, nginx [33] as origin
HTTP server and Apache Traffic Server (ATS) [16] as edge
HTTP cache proxy. To model the physical distance between
the edge and the origin server, the traffic shaper tc [34] is
used to add a 40 ms delay for packets egressing the origin
server. The origin server is filled with N = 107 video chunks
of size 1.125 MB. The edge cache is equipped with an SSD

0.02 0.04 0.06 0.08 0.10
Normalized filter size δ1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
lo

b
al

h
it

ra
te

Model

Simulation

Experiment

α = 0.8

α = 0.9

Fig. 10. Global hit rate as a function of LRU filter size for the model,
simulation, and experiments for N=107, δ2=0.01, α∈{0.8, 0.9}.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
h
u

n
k

d
ow

n
lo

ad
ti

m
e

(s
)

100 101 102 103 104 105 106
0.0

0.2

0.4

100 101 102 103 104 105 106

Content ID

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

R
eq

u
es

t
re

p
ar

ti
ti

on

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chunk download time
Cache Hit Proxied

Redirected to origin

Fig. 11. Average per-content hit rate and response time for N=107, α=0.9,
δ2=0.01 (content IDs are sorted by increasing popularity). In-network LRU
filter with δ1 = δ∗1 = 0.06 (top) vs no filter (bottom).

cache of size 112.5 GB, allowing to store C2 = 105 chunks
(normalized size δ2 = 0.01). Finally, the LRU filter in the VPP
admission module is set with different sizes throughout the
experiment, ranging from C1 = 0 to C1 = 10×C2 = 1.0 ·106

(i.e., δ1 ∈ [0, 0.10]). The content popularity follows Zipf
distributions with different α, representing different content
popularity skewness.

Unless specified otherwise, the query generator simulates
1400 clients that simultaneously request video chunks ac-
cording to the popularity distribution. As a baseline, the
same experiments are repeated without in-network filtering –
i.e., with requests always assigned to the edge cache.

V. EXPERIMENTAL RESULTS

In this section, we first verify the predictive power of the
analytical model presented in Section III. We then verify
if and quantify how LRU filtering optimization yields QoE
improvements (chunk download time) and operational benefits
(CPU consumption reduction).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Edge server CPU load

0.25

0.30

0.35

0.40

0.45

G
lo

ba
l
hi

t
ra

te

0.001

0.01

0.02

0.04 0.07 0.1

Normalized filter size δ1

Without
the filter

Fig. 12. CPU load versus hit rate for N = 107, α = 0.9, δ2 = 0.01.

A. Model Validation

To validate the model of Section III-B, we show in Figure 10
the average hit rate as a function of the normalized filter size δ1
for α = 0.8 and α = 0.9 (as in equation (8), the global hit rate
corresponds to those queries served by the edge cache without
proxying). Values corresponding to the theoretical model (•)
and a Poisson simulation thereof (N) are reported alongside the
experimental results (×). According to the model, the global
hit rate starts at 0 when C1 = 0, then hits an optimum before
decreasing to that of a configuration without the filter. Since
ATS uses FIFO rather than LRU as cache admission policy
and the model assumes an infinite catalogue, the curves do
not match perfectly. However, the optimal value of the hit
rate is attained for the same value of C1 (e.g., at δ1 = 0.06
for the experimental data when α = 0.9, while the value
predicted by equation (11) yields δ∗1 = 0.067). This indicates
that equation (11) provides a good approximation for sizing
the LRU filter in real deployments. Finally, in terms of hit
rate, when using the optimally-sized LRU filter with α = 0.9,
the global hit ratio reaches 48%, as compared to 44% when
without the filter, thus yielding a 9% improvement.

B. Quality of Experience

To quantify the QoE benefits of the proposed architecture
after LRU filter optimization, download times were recorded
when using the optimal value δ∗1 as filter size, and with 1.5·106

queries injected into the system. Figure 11 depicts the average
per-content download time and per-content hit rate, for α=0.9.
As expected, the LRU filter helps distinguish between popular
and unpopular content: without LRU filtering, the cache can
serve the ≈300 most popular chunks (amounting to ≈20% of
the queries) with a hit rate greater than 95%, whereas LRU
filtering provides a 95% hit rate for the ≈2100 most popular
video chunks (amounting to ≈30% of the queries). This results
in a consistently lower download time with LRU filtering as
popular chunks enjoy an improved hit-rate. Particularly, the
300 most popular chunks benefit from a sub-31 ms download
time, compared to 88 ms with the baseline. Furthermore,
unpopular chunks also enjoy a lower download time thanks to
the removal of the proxying step. Requests for these chunks
are indeed routed directly to the origin server instead of going

0 500 1000 1500 2000
Number of concurrent clients

0

1

2

3

C
h
u

n
k

d
ow

n
lo

ad
ti

m
e

(s
)

LRU filter

Baseline

Fig. 13. Median chunk download time versus number of concurrent clients,
for N = 107, α = 0.9, δ2 = 0.01. Error bars represent the 10th and 90th
percentiles. In-network LRU filter with δ1 = δ∗1 = 0.06 vs no filter.

TABLE III
PERFORMANCE FOR DIFFERENT CONTENT POPULARITY DISTRIBUTIONS

α
Hit rate (%) Chunk load time Edge CPU load (%)

Filter Baseline Filter Baseline Filter Baseline
0.8 30.0 21.9 379 ms 755 ms 49.0 83.5
0.9 47.0 38.6 220 ms 345 ms 54.4 85.9
1 65.3 59.5 139 ms 189 ms 56.8 83.9
1.1 81.8 77.8 85.6 ms 107 ms 53.8 74.4

through the proxy. More precisely, chunks with IDs 106→107

are redirected to the origin server with probability greater
than 90%. To summarize, requests for popular content enjoy a
lower download time thanks to increased hit-rate and reduced
CPU usage at the cache, while requests for unpopular content
(which would have had to be proxied with high probability)
benefit from avoiding the proxying cost, as well as from lower
network utilization on the upstream link and lower CPU usage
on the origin server.

C. Operational Benefits

Apart from client-facing metrics (hit rate, download time),
we inspect the server-side performance gain brought by our
architecture. Figure 12 depicts the CPU load on the edge
cache alongside the global hit rate when the filter size varies
(parameters identical to Figure 10, and α = 0.9). As the filter
size increases, the edge CPU load keeps increasing, even after
the hit rate starts decreasing – because the edge has to proxy
more and more queries, and becomes polluted by unpopular
content. The benefits of having an optimally-sized filter thus
become clear: it decreases the CPU footprint as compared to
bigger filters (or no filter) while improving the global hit rate.
For instance, the CPU load went down from 86% (no filter) to
56% (optimal filter), reducing the CPU footprint by one third.

Finally, the scalability of the architecture is evaluated in
Figure 13, which illustrates the impact of the number of
simulated users on the chunk download time. We report the
median download time (markers) as well as the 10th and 90th
percentiles (error-bars). The baseline architecture can sustain
1500 clients before chunk download time starts increasing,
whereas our architecture allows up to 1800 clients before a
degradation can be observed. In particular, the LRU filter keeps

the 90th percentile below 2.3× the median, thus providing
improved QoE for most users even under high load.

To sum up these results, Table III reports the global hit rate,
average download time and edge CPU load, when using opti-
mal LRU filtering versus no filtering, and for different values
of α. It highlights that our architecture brings improvement on
those three dimensions: it improves the hit rate by up to 37%
while decreasing the average chunk download time by up to
50% and the average CPU load by up to 41% (for α = 0.8).

VI. CONCLUSION

This paper details the functioning of a content-aware data-
plane for video CDNs. By addressing named video-chunks in
the network layer, the forwarding plane becomes application-
aware. Decisions can then be made at the network layer,
removing the need from terminating HTTP sessions and thus
decreasing CPU costs and increasing scalability. For instance,
the performance of edge caches can be improved through
network-layer popularity estimation using an LRU filter and
traffic redirection using 6LB. We provide an analytical model
for the performance of such a filter and guidelines for its opti-
mization. An implementation of the LRU filter on state-of-the-
art virtual routing software shows significant improvements in
terms of user QoE (−36% of chunk download time) and of
resource utilization at the edge (−37% of CPU utilization).

REFERENCES

[1] Cisco Virtual Networking Index. “The zettabyte era: Trends
and analysis.”, 2017. URL https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.pdf. [Accessed 2018/06/12].

[2] A. Balachandran, et al. “Developing a predictive model of quality of
experience for internet video.” Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM - SIGCOMM ’13, p. 339, 2013.

[3] I. Poese, et al. “Enabling content-aware traffic engineering.” Computer
Communication Review, vol. 42, no. 5, pp. 22–28, 2012.

[4] H. Huang, et al. “Joint optimization of content replication and server
selection for video-on-demand.” In Communications (ICC), 2012 IEEE
International Conference on, IEEE, pp. 2065–2069, 2012.

[5] M. Ghasemi, et al. “Performance characterization of a commercial
video streaming service.” In Proceedings of the 2016 ACM on Internet
Measurement Conference - IMC ’16, pp. 499–511, 2016.

[6] L. Zhang, et al. “Named data networking.” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[7] The Linux Foundation. “FD.io CICN project.”, 2017. URL https://wiki.
fd.io/view/Cicn.

[8] G. Carofiglio, et al. “FOCAL: Forwarding and caching with latency
awareness in information-centric networking.” In Globecom Workshops
(GC Wkshps), 2015 IEEE, IEEE, pp. 1–7, 2015.

[9] A. Chanda, et al. “Content based traffic engineering in software defined
information centric networks.” In Computer Communications Workshops
(INFOCOM WKSHPS), 2013 IEEE Conference on, IEEE, pp. 357–362,
2013.

[10] E. Yeh, et al. “Vip: A framework for joint dynamic forwarding and
caching in named data networks.” In Proceedings of the 1st ACM
Conference on Information-Centric Networking, ACM, pp. 117–126,
2014.

[11] Y. Jin, et al. “Towards joint resource allocation and routing to optimize
video distribution over future internet.” In 2015 IFIP Networking
Conference (IFIP Networking), IEEE, pp. 1–9, 2015.

[12] Y. Desmouceaux, et al. “6LB: Scalable and application-aware load bal-
ancing with segment routing.” IEEE/ACM Transactions on Networking,
vol. 26, no. 2, pp. 819–834, 2018.

[13] C. Filsfils, et al. “Segment routing architecture.” RFC 8402, Jul 2018.
URL https://rfc-editor.org/rfc/rfc8402.txt.

[14] M. Enguehard, et al. “A popularity-based approach for effective cloud
offload in fog deployments.” In 30th International Teletraffic Congress
(ITC 30), Vienna, Austria, Sep 2018.

[15] The Fast Data Project (fd.io). “Vector Packet Processing (VPP).”, 2016.
URL https://wiki.fd.io/view/VPP.

[16] The Apache Software Foundation. “Apache Traffic Server.”, 2017. URL
http://trafficserver.apache.org.

[17] A.-m. K. Pathan and R. Buyya. “A taxonomy and survey of content
delivery networks.” Grid Computing and Distributed Systems GRIDS
Laboratory University of Melbourne Parkville Australia, vol. 148, pp.
1–44, 2006.

[18] I. ISO. “23009–1: 2014: Information technology-dynamic adaptive
streaming over HTTP (DASH).”

[19] M. K. Mukerjee and D. Naylor. “Practical , real-time centralized control
for CDN-based live video delivery.” Sigcomm 2015, pp. 311–324, 2015.

[20] D. Naylor, et al. “The cost of the S in HTTPS.” In Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, ACM, pp. 133–140, 2014.

[21] I. Marinos, et al. “Network stack specialization for performance.” In
ACM SIGCOMM Computer Communication Review, vol. 44, ACM, pp.
175–186, 2014.

[22] E. Jeong, et al. “mTCP: a highly scalable user-level TCP stack for
multicore systems.” In NSDI, vol. 14, pp. 489–502, 2014.

[23] C. Filsfils, et al. “The segment routing architecture.” In Global
Communications Conference (GLOBECOM), 2015 IEEE, IEEE, pp. 1–
6, 2015.

[24] S. Previdi, et al. “IPv6 Segment Routing Header (SRH).” Internet-
Draft draft-ietf-6man-segment-routing-header-13, Internet Engineering
Task Force, May 2018. URL https://datatracker.ietf.org/doc/html/
draft-ietf-6man-segment-routing-header-13. Work in Progress.

[25] D. E. Eisenbud, et al. “Maglev: A fast and reliable software network
load balancer.” In NSDI, pp. 523–535, 2016.

[26] P. Patel, et al. “Ananta: Cloud scale load balancing.” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 207–218, 2013.

[27] H. Che, et al. “Hierarchical web caching systems: Modeling, design and
experimental results.” IEEE Journal on Selected Areas in Communica-
tions, vol. 20, no. 7, pp. 1305–1314, 2002.

[28] C. Fricker, et al. “A versatile and accurate approximation for LRU
cache performance.” In Proceedings of the 24th International Teletraffic
Congress, International Teletraffic Congress, p. 8, 2012.

[29] M. Garetto, et al. “Efficient analysis of caching strategies under dynamic
content popularity.” In Computer Communications (INFOCOM), 2015
IEEE Conference on, IEEE, pp. 2263–2271, 2015.

[30] P. Pfister and Y. Desmouceaux. “Segment routing based load balancer
plugin.”, 2019. URL https://github.com/Oryon/vpp-dev/blob/6lb/src/
plugins/srlb/srlb_plugin_doc.md.

[31] A. Kivity, et al. “kvm: the linux virtual machine monitor.” In
Proceedings of the Linux symposium, vol. 1, Ottawa, Dntorio, Canada,
pp. 225–230, 2007.

[32] C. Byström, et al. “Locust.”, 2018. URL https://locust.io/.
[33] W. Reese. “Nginx: the high-performance web server and reverse proxy.”

Linux Journal, vol. 2008, no. 173, p. 2, 2008.
[34] tc(8) - Linux man page, 2.7.5 ed., Dec 2001.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://wiki.fd.io/view/Cicn
https://wiki.fd.io/view/Cicn
https://rfc-editor.org/rfc/rfc8402.txt
https://wiki.fd.io/view/VPP
http://trafficserver.apache.org
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-13
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-13
https://github.com/Oryon/vpp-dev/blob/6lb/src/plugins/srlb/srlb_plugin_doc.md
https://github.com/Oryon/vpp-dev/blob/6lb/src/plugins/srlb/srlb_plugin_doc.md
https://locust.io/

APPENDIX A
PROOF OF THE DERIVATION OF (7)

In this section, we will prove that, when N →∞:

t2 = Ψ−1ψ−1(δ1)
(δ2)Nα +O(Nα−1)

where t2 is defined by equation (5). We know from equa-
tion (6) that:

t1 = ψ−1(δ1)Nα +O(Nα−1)

Therefore, it is possible to define, for all N ≥ 1:

f(N) , t1/N
α − ψ−1(δ1)

so that we can write t1/N
α = ψ−1(δ1) + f(N), with the

property that f(N) = O(1
N). With this notation, we have:

q2(n) =
1

nα
(1− e−

ψ−1(δ1)+f(N)

(n/N)α) (12)

Given this, t2 can be found as the unique t ∈ (0,+∞)
verifying:

δ(t) ,
1

N

N∑
n=1

(
1− exp[− t

nα
(1− e−

ψ−1(δ1)+f(N)

(n/N)α)]

)
= δ2

(13)
The remainder of this section will be devoted to rigorously

proving that it is possible to replace the (almost) Riemann sum
in equation (13) by a corresponding integral. Several lemmas
will be needed.

Fact 1. The following inequality holds for all real x ≥ 0:

|e−x − 1| ≤ x, ∀x ≥ 0

Proof. This comes easily from the fact that x 7→ 1 − e−x is
concave.

Lemma 1. For all N ≥ 1, f(N) ≥ 0.

Proof. It suffices to show that evaluating the implicit equa-
tion (2) for ψ−1(δ1)Nα yields a result smaller than δ1. This
is indeed the case, because:

1

N

N∑
n=1

(1− e−ψ
−1(δ1)N

α/nα) ≤
∫ 1

0

(1− e−ψ
−1(δ1)/x

α

)dx

= ψ(ψ−1(δ1)) = δ1

where we used the fact that right Riemann sums are lower
than the corresponding integral for a decreasing function.

Lemma 2. Let N ≥ 1 and 1 ≤ n ≤ N . In equation (13), the

factor e−
ψ−1(δ1)+f(N)

(n/N)α can be replaced with:

e−
ψ−1(δ1)

(n/N)α + gN (n)

where
|gN (n)| ≤ f(N)

(n/N)α
e−

ψ−1(δ1)

(n/N)α

Proof. Let gN (n) , e−
ψ−1(δ1)+f(N)

(n/N)α − e−
ψ−1(δ1)

(n/N)α , so that we

can indeed write e−
ψ−1(δ1)+f(N)

(n/N)α = e−
ψ−1(δ1)

(n/N)α + gN (n). Since
f(N) ≥ 0 (lemma 1), it is possible to use Fact 1 on f(N) to
write:

|gN (n)| = |e−
ψ−1(δ1)+f(N)

(n/N)α − e−
ψ−1(δ1)

(n/N)α |

= |e−
f(N)

(n/N)α − 1|e−
ψ−1(δ1)

(n/N)α ≤ f(N)

(n/N)α
e−

ψ−1(δ1)

(n/N)α

Lemma 3. Let N ≥ 1. In equation (13), the factor

exp[− t2
nα (1− e−

ψ−1(δ1)+f(N)

(n/N)α)] can be replaced with:

exp[− t2
nα

(1− e−
ψ−1(δ1)

(n/N)α)] + hN (n)

where

|hN (n)| ≤ exp[− t2
nα

(1− e−
ψ−1(δ1)

(n/N)α)]
t2N

α

n2α
e−

ψ−1(δ1)

(n/N)α f(N)

Proof. Define hN (n) as:

hN (n) , exp[− t2
nα

(1−e−
ψ−1(δ1)

(n/N)α)]

(
exp[− t2

nα
|gN (n)|]− 1

)
so that indeed, one can write exp[− t2

nα (1−e−
ψ−1(δ1)+f(N)

(n/N)α)] =

exp[− t2
nα (1−e−

ψ−1(δ1)

(n/N)α)]+hN (n). Since gN (n) ≤ 0, we have
hN (n) ≤ 0. Using Fact 1 on t2|gN (n)|/nα, and lemma 2
yields:

|hN (n)| ≤ exp[− t2
nα

(1− e−
ψ−1(δ1)

(n/N)α)]
t2
nα
|gN (n)|

≤ exp[− t2
nα

(1− e−
ψ−1(δ1)

(n/N)α)]
t2N

α

n2α
e−

ψ−1(δ1)

(n/N)α f(N)

Lemma 4. The following approximation holds when N →∞:

t2 = O(Nα)

Proof. It suffices to show that there exists a (fixed) real k > 0
such that δ(kNα) ≥N→∞ δ(t2) = δ2, which will prove that
t2 ≤N→∞ kNα. Let k > 0 be a fixed real, and N ≥ 1 be a
fixed integer. Using the same reasoning as for lemma 3 (with
kNα instead of t2), it is possible to define ĥk,N (n), such that:

δ(kNα) =

1

N

N∑
n=1

(
1− exp[−kN

α

nα
(1− e−

ψ−1(δ1)

(n/N)α)]− ĥk,N (n)
)

(14)

where:

|ĥk,N (n)| ≤ exp[−kN
α

nα
(1−e−

ψ−1(δ1)

(n/N)α)]
kN2α

n2α
e−

ψ−1(δ1)

(n/N)α f(N)

Then, using a Riemann sum:

lim sup
N→∞

∣∣∣ 1

N

N∑
i=1

ĥk,N (n)

f(N)

∣∣∣ ≤∫ 1

0

exp[− k

xα
(1− e−

ψ−1(δ1)
xα)]

k

x2α
e−

ψ−1(δ1)
xα dx < +∞

from which we conclude that 1
N

∑N
i=1 ĥk,N (n) = O(f(N)) =

O(1
N). It is now possible to use this approximation back in

equation (14), along with a Riemann sum, to obtain:

δ(kNα) =

∫ 1

0

(
1− exp[− k

xα
(1− e−

ψ−1(δ1)
xα)]

)
dx+ o(1)

where the o(1) is when N →∞. But:

lim
k→∞

∫ 1

0

(
1− exp[− k

xα
(1− e−

ψ−1(δ1)
xα)]

)
dx =

∫ 1

0

1dx = 1

It is therefore possible to assume that k was chosen to be
large enough so that the integral above is ≥ 1+δ2

2 . Therefore,
δ(kNα) ≥ 1+δ2

2 + o(1) ≥N→∞ δ2, which proves that t2 =
O(Nα).

Lemma 5. The following approximation holds when N →∞:

t2 = Ω(Nα)

Proof. This can be proven by using exactly the same argument
as in lemma 4, except that this time we pick a sufficiently small
k so that δ(kNα) ≤N→∞ δ2, using:

lim
k→0

∫ 1

0

(
1− exp[− k

xα
(1− e−

ψ−1(δ1)
xα)]

)
dx =

∫ 1

0

0dx = 0

Lemma 6. The following approximation holds when N →∞:

1

N

N∑
n=1

hN (n) = O(
1

N
)

Proof. Using lemmas 4 and 5, we have t2 = Θ(Nα). It is
therefore possible to find reals M− ≥ 0 and M+ ≥ 0 such
that:

M− ≤ t2/Nα ≤M+

This yields, using lemma 3:

|hN (n)| ≤ exp[−M
−Nα

nα
(1− e−

ψ−1(δ1)

(n/N)α)]×

M+N2α

n2α
e−

ψ−1(δ1)

(n/N)α f(N)

Therefore, using a Riemann sum:

lim sup
N→∞

∣∣∣ 1

N

N∑
n=1

hN (n)

f(N)

∣∣∣ ≤∫ 1

0

exp[−M
−

xα
(1− e−

ψ−1(δ1)
xα)]

M+

x2α
e−

ψ−1(δ1)
xα dx < +∞

This proves that | 1N
∑N
n=1 hN (n)| = O(f(N)) = O(1

N).

Lemma 7. The sum:

1

N

N∑
n=1

(
1− exp[− t2

nα
(1− e−

ψ−1(δ1)

(n/N)α)]

)
can be replaced by the integral:∫ 1

0

(
1− exp[− t2/N

α

xα
(1− e−

ψ−1(δ1)
xα)]

)
dx

with error O(1
N).

Proof. Note that this is not an immediate Riemann sum, as the
integrands depend on t2/Nα. In order to prove convergence,
let φβ(x) = 1 − exp[−βxα (1 − e−ψ−1

α (δ1)/x
α

)]. Let N ≥ 1 be
a fixed index. According to the rectangle method applied to
φt2/Nα , we know that, for some ξN ∈ [0, 1]:∣∣∣∣∣ 1

N

N∑
i=1

φt2/Nα
(n
N

)
−
∫ 1

0

φt2/Nα(x)dx

∣∣∣∣∣ ≤ |φ
′
t2/Nα

(ξN)|
2N

It remains to prove that |φ′t2/Nα(ξN)| = O(1) when N →∞.
We have, for x ∈ (0, 1]:

φ′t2/Nα(x) = − 1

x2α+1
exp[
−t2/Nα

xα
(1− e−ψ

−1
α (δ1)/x

α

)]×(
αψ−1α (δ1)

t2
Nα

e−ψ
−1
α (δ1)/x

α

+αxα
t2
Nα

(1− e−ψ
−1
α (δ1)/x

α

)
)

But, we know that t2/Nα = Θ(1). Thus, for x ∈ (0, 1]:

|φ′t2/Nα(x)| ≤ 1

x2α+1
exp[
−M−

xα
(1− e−ψ

−1
α (δ1)/x

α

)]×(
αψ−1α (δ1)M+e−ψ

−1
α (δ1)/x

α

+αM+xα(1− e−ψ
−1
α (δ1)/x

α

)
)

≤ 1

x2α+1
exp[
−M−

xα
(1− e−ψ

−1
α (δ1)/x

α

)]×(
αψ−1α (δ1)M+ + αM+

)
Since this last function is bounded on [0, 1], we obtain
|φ′t2/Nα(x)| ≤ C for some C > 0 independent from x and
N . Thus, |φ′t2/Nα(ξN)| ≤ C = O(1), which concludes the
proof.

It is now possible to use these lemmas in order to conclude
the proof of the derivation of (7).

Proof of the derivation of (7). Lemmas 3, 6 and 7 succes-
sively allow us to write:

δ2 =
1

N

N∑
n=1

(
1− exp[− t2

nα
(1− e−

ψ−1(δ1)

(n/N)α)]

)
+

1

N

N∑
n=1

hN (n)

=
1

N

N∑
n=1

(
1− exp[− t2

nα
(1− e−

ψ−1(δ1)

(n/N)α)]

)
+O(

1

N
)

=

∫ 1

0

(
1− exp[− t2/N

α

xα
(1− e−

ψ−1(δ1)
xα)]

)
dx+O(

1

N
)

Therefore, we can write:

δ2 = Ψψ−1(δ1)(t2/N
α) +O(

1

N
)

⇒ t2
Nα

= Ψ−1ψ−1(δ1)

(
δ2 +O(

1

N
)

)
= Ψ−1ψ−1(δ1)

(δ2) +O(
1

N
)

⇒ t2 = Ψ−1ψ−1(δ1)
(δ2)Nα +O(Nα−1)

which concludes the proof.
APPENDIX B

PROOF OF THE DERIVATION OF (9)

The global hit rate E[H] can be written as:

E[H] = 1−
∑N
n=1 q(n)[1− h1(n)h2(n)]∑N

n=1 q(n)

Denote with α(N) and β(N) the numerator and denominator
of this expression, so that we have:

E[H] = 1− α(N)

β(N)
(15)

Furthermore, let us define for all N ≥ 1,

F (N) , t2/N
α −Ψ−1ψ−1(δ1)

(δ2)

According to equation (7), we have F (N) = O(1
N). With

these definitions, the numerator α(N) can be written as:

α(N) =

N∑
n=1

1

nα

[
1− (1− e−

t1
nα)×

(
1− exp[− t2

nα
(1− e−

t1
nα)]

)]
=

1

Nα−1
1

N

N∑
n=1

1

(n/N)α

[
1− (1− e−

ψ−1(δ1)+f(N)

(n/N)α)×

(
1− exp[−

Ψ−1ψ−1(δ1)
(δ2) + F (N)

(n/N)α
(1− e−

ψ−1(δ1)+f(N)

(n/N)α)]
)]

Using the same method as in appendix A, it is possible to
prove that one can replace the pseudo-Riemann sum in α(N)
by the integral I(δ1, δ2) with error O(1

N):

α(N) =
1

Nα−1

(
I(δ1, δ2) +O(

1

N
)

)
(16)

For the denominator β(N) =
∑N
n=1 1/nα, it is well-known

that:

β(N) =

1

Nα−1

(
1

1−α +O(1
N)
)

α < 1

logN +O(1) α = 1

ζ(α) +O(1
N) α > 1

(17)

Plugging equations (16) and (17) into equation (15) yields
the desired form for equation (9), which concludes the proof.

